• Вся правда о многоядерных процессорах. Процессоры Лучше 1 ядро 2 ядра

    20.08.2020

    Привет всем! Иногда игра или программа не работает на полную мощность, т.к. за производительность отвечают не все ядра. В этой статье посмотрим как задействовать все ядра вашего процессора.

    Но не ждите волшебной палочки, т.к. если игра или программа не поддерживает многоядерность, то ничего не поделать, если только не переписать заново приложение.

    Как запустить все ядра процессора?

    Итак, способов будет несколько. По этому показываю первый .

    Заходим в пуск - выполнить или клавиши win+r

    Выбираем ваше максимальное число процессоров.

    Так кстати можно узнать количество ядер процессора. Но это виртуальные ядра, а не физически. Физических может быть меньше.

    • Заходим в диспетчер задач — ctrl+shift+esc.
    • Или ctrl+alt+del и диспетчер задач.
    • Или нажимаем правой кнопкой по панели управления и выбираем диспетчер задач.

    Переходим во вкладку процессы. Находим игру и нажимаем правой кнопкой мыши по процессу. Да кстати, игра должна быть запущена. Свернуть её можно или Win+D или alt+tab.

    Выбираем задать соответствие.

    Выбираем все и нажимаем ок.

    Чтобы посмотреть, работают все ядра или нет, то в диспетчере задач заходим во вкладку быстродействие.

    Во всех вкладках будет идти диаграмма.

    Если нет, то нажимаем опять задать соответствие, оставляем только ЦП 0, нажимаем ок. Закрываем диспетчер задач, открываем опять повторяем все, то же самое, выбираем все процессоры и нажимаем ок.

    В ноутбуках, бывает настроено энергосбережение таким образом, что настройки не дают использовать все ядра.

    • Win7 — Заходим в панель управления, идем в электропитание - Изменить параметры плана - изменить дополнительные параметры питания - управление питанием процессора - минимальное состояние процессора.
    • Win8, 10 — Или: параметры - система - питание и спящий режим - дополнительные параметры питания - настройка схемы электропитания - изменить дополнительные параметры питания - управление питанием процессора - минимальное состояние процессора

    Для полного использования, должно стоять 100%.

    Как проверить сколько работает ядер?

    Запускаем и видим число активных ядер.

    Не путайте этот параметр с количеством виртуальных процессоров, который отображены правее.

    На что влияет количество ядер процессора?

    Многие путают понятие количества ядер и частоту процессора. Если это сравнивать с человеком, то мозг это процессор, нейроны - это ядра. Ядра работают не во всех играх и приложениях. Если в игре например выполняется 2 процесса, один вырисовывает лес, а другой город и в игре заложено многоядерность, то понадобиться всего 2 ядра, чтобы загрузить эту картинку. А если в игре заложено больше процессов, то задействуют все ядра.

    И может быть наоборот, игра или приложение может быть написана так, одно действие может выполнять только одно ядро и в этой ситуации выиграет процессор, у которого выше частота и наиболее хорошо сложена архитектура (по этому обычно ).

    По этому грубо говоря, количество ядер процессора, влияет на производительность и быстродействие.

    Гонку за дополнительную производительность на рынке процессоров могут выиграть только те производители, которые на основе текущих технологий производства смогут обеспечить разумный баланс между тактовой частотой и количеством вычислительных ядер. Благодаря переходу на 90- и 65-нм техпроцессы появилась возможность создавать процессоры с большим числом ядер. В немалой степени это было обусловлено и новыми возможностями регулировки тепловыделения, и размерами ядер, именно поэтому сегодня мы наблюдаем появление всё большего числа четырёхядерных процессоров. Но как насчёт программного обеспечения? Насколько хорошо оно масштабируется от одного до двух или четырёх ядер?

    В идеальном мире программы, оптимизированные под многопоточность, позволяют операционной системе распределять несколько потоков по доступным вычислительным ядрам, будь то один процессор или несколько, с одним ядром или с несколькими. Добавление новых ядер позволяет получить больший прирост производительности, чем любой прирост тактовой частоты. Это действительно имеет смысл: большее количество рабочих почти всегда справятся с заданием быстрее, чем меньшее количество более быстрых рабочих.

    Но имеет ли смысл оснащать процессоры четырьмя или даже большим числом ядер? Хватит ли работы, чтобы нагрузить четыре ядра или большее их количество? Не стоит забывать, что весьма сложно распределить работу между ядрами, чтобы такие физические интерфейсы, как HyperTransport (AMD) или Front Side Bus (Intel), не стали "узким местом". Есть и третий вариант: механизм, который распределяет нагрузку между ядрами, а именно, диспетчер ОС, может тоже стать "узким местом".

    Переход AMD с одного на два ядра прошёл практически безупречно, поскольку компания не увеличивала тепловой пакет до экстремального уровня, как это было у процессоров Intel Pentium 4. Поэтому процессоры Athlon 64 X2 были дорогими, но вполне разумными, а линейка Pentium D 800 прославилась своей горячей работой. Но 65-нм процессоры Intel и, в особенности, линейка Core 2 изменили картину. Intel смогла сочетать два процессора Core 2 Duo в одной упаковке, в отличие от AMD, в результате чего мы и получили современные Core 2 Quad. AMD обещает выпустить до конца этого года свои собственные четырёхядерные процессоры Phenom X4.

    В нашей статье мы рассмотрим конфигурацию Core 2 Duo на четырёх ядрах, двух ядрах и на одном ядре. И посмотрим, насколько хорошо масштабируется производительность. Стоит ли сегодня переходить на четыре ядра?

    Одно ядро

    Под термином "одноядерный" скрывается процессор, который обладает одним вычислительным ядром. Сюда подпадают практически все процессоры с зарождения архитектуры 8086 вплоть до Athlon 64 и Intel Pentium 4. Пока техпроцесс производства не стал достаточно тонким, чтобы создавать два вычислительных ядра на одном кристалле, переход на меньший техпроцесс использовался для снижения рабочего напряжения, увеличения тактовых частот или добавления функциональных блоков и кэш-памяти.

    Работа одноядерного процессора на высоких тактовых частотах может дать более высокую производительность для одного приложения, но подобный процессор в один момент времени может выполнять только одну программу (поток). Intel реализовала принцип Hyper-Threading, который эмулирует наличие нескольких ядер для операционной системы. Технология HT позволила лучше загрузить длинные конвейеры процессоров Pentium 4 и Pentium D. Конечно, прирост производительности был невелик, но отзывчивость системы оказалась определённо лучше. А в многозадачном окружении это может быть и важнее, поскольку вы сможете выполнять какую-либо работу, пока ваш компьютер работает над определённой задачей.

    Поскольку двуядерные процессоры сегодня стоят очень дёшево, мы не рекомендуем брать одноядерные процессоры, если только вы не хотите экономить каждую копейку.


    Процессор Core 2 Extreme X6800 на момент выхода был самым быстрым в линейке Intel Core 2, работая на частоте 2,93 ГГц. Сегодня двуядерные процессоры достигли 3,0 ГГц, правда, при более высокой частоте шины FSB1333.

    Переход на два процессорных ядра означает в два раза большую вычислительную мощность, но только на приложениях, оптимизированных под многопоточность. Обычно такие приложения включают профессиональные программы, которым нужна высокая вычислительная мощность. Но двуядерный процессор всё равно имеет смысл, даже если вы используете свой компьютер лишь для электронной почты, просмотра интернет-страниц и работы с офисными документами. С одной стороны, современные модели двуядерных процессоров потребляют не особо больше энергии, чем одноядерные модели. С другой стороны, второе вычислительное ядро не только добавляет производительность, но и улучшает отзывчивость системы.

    Вы когда-нибудь ждали, пока WinRAR или WinZIP закончат сжатие файлов? На одноядерной машине вы вряд ли сможете быстро переключаться между окнами. Даже воспроизведение DVD может нагружать одно ядро не меньше, чем сложная задача. Двуядерный процессор позволяет легче справляться с одновременным запуском нескольких приложений.

    Двуядерные процессоры AMD содержат два полноценных ядра с кэш-памятью, интегрированным контроллером памяти и кросс-коммутатором, который обеспечивает совместный доступ к памяти и к интерфейсу HyperTransport. Intel пошла путём, схожим с первым Pentium D, установив в физический процессор два ядра Pentium 4. Поскольку контроллер памяти является частью чипсета, системную шину приходится использовать и для связи между ядрами, и для доступа к памяти, что накладывает определённые ограничения на производительность. Процессор Core 2 Duo оснащён более совершенными ядрами, которые дают лучшую производительность на такт и лучшее соотношение производительности на ватт. У двух ядер используется общий кэш L2, который позволяет обмениваться данными без использования системной шины.

    Процессор Core 2 Quad Q6700 работает на частоте 2,66 ГГц, используя внутри два ядра Core 2 Duo.

    Если сегодня существует много причин, чтобы перейти на двуядерные процессоры, то четыре ядра выглядят пока не так убедительно. Одна из причин заключается в ограниченной оптимизации программ под несколько потоков, но существуют и определённые проблемы в архитектуре. Хотя AMD сегодня критикует Intel за упаковку двух двуядерных кристаллов в одном процессоре, считая это не "настоящим" четырёхядерным CPU, подобный подход Intel работает хорошо, поскольку процессоры действительно обеспечивают четырёхядерную производительность. С точки зрения производства легче получить высокий уровень выхода годных кристаллов и выпускать больше продуктов с небольшими ядрами, которые затем можно соединить вместе для нового, более мощного продукта на новом техпроцессе. Что же касается производительности, то есть "узкие места" - два кристалла взаимодействуют друг с другом через системную шину, поэтому весьма сложно управлять несколькими ядрами, распределёнными на несколько кристаллов. Хотя наличие нескольких кристаллов позволяет обеспечить лучшую экономию энергии и регулировать частоты отдельных ядер для нужд приложения.

    Настоящие четырёхядерные процессоры используют четыре ядра, которые, вместе с кэш-памятью, располагаются на одном кристалле. Здесь важно наличие общего унифицированного кэша. AMD будет реализовывать такой подход, оснащая 512 кбайт кэша L2 каждое ядро и добавляя кэш L3 для всех ядер. Преимущество AMD заключается в том, что можно будет выключать отдельные ядра и ускорять другие, чтобы получить более высокую производительность однопоточных приложений. Intel пойдёт тем же путём, но не раньше представления в 2008 году архитектуры Nehalem.

    Утилиты вывода системной информации, такие, как CPU-Z, позволяют узнать число ядер и объёмы кэша, но не раскладку процессора. Вы не узнаете, что Core 2 Quad (или четырёхядерный Extreme Edition, показанный на скриншоте) состоит из двух ядер.


    Количество ядер процессора ноутбука влияет на спрос. Многие покупатели уделяют пристальное внимание этой характеристике, руководствуясь принципом «чем больше ядер — тем быстрее и производительнее лэптоп». Но эта формула справедлива далеко не всегда.

    Как считают эксперты интернет-магазина «Фокстрот», мощный многоядерный процессор раскрывает весь потенциал только при работе с тяжелыми 3D-играми и ресурсоемкими инженерными/дизайнерскими программами. В остальных случаях пользователь не ощущает существенного прироста в скорости, поскольку процессор работает только в полсилы.

    Производительность 4-ядерных процессоров

    Самыми производительным считается ноутбук для игр , оснащенный процессором с 4 ядрами. Но и среди 4-ядерных процессоров существует своя конкуренция: одни модели CPU справляются со своими задачами гораздо быстрее других.

    Разница в производительности объясняется не только количеством ядер, но и другими характеристиками процессора — тактовой частотой, техпроцессом, количеством потоков, объемом кеш-памяти и частотой системной шины.

    Наглядные различия между процессорами с одинаковым количеством ядер демонстрируют с помощью специальных тестов (бенчмарков), результаты которых представляют в виде баллов. Максимальное количество баллов набирают процессоры Intel Core i7 и Core i5. Процессоры семейства AMD получают вдвое меньше баллов.

    Превосходство продукции Intel частично объясняется использованием фирменной технологии Hyper-Threading, которая условно делит каждое физическое ядро на два виртуальных. В результате 4-ядерный ноутбук , который имеет процессор с архитектурой 4/8, параллельно обрабатывает 8 потоков данных, что положительно сказывается на его скорости.

    Совет: при выборе игрового ноутбука отдавайте предпочтение моделям с процессорами Core i7 или i5, поддерживающими технологию Hyper-Threading.

    Когда 4 ядра не нужны

    Количество ядер процессора влияет на стоимость ноутбука. Стоит ли переплачивать за огромный потенциал CPU, если эта мощность не востребована?

    4-ядерный процессор будет функционировать вполсилы, если:

    • ноутбук используется для выполнения несложных задач — работы с офисными приложениями, серфинга в интернете, общения в социальных сетях.

    Лэптоп с 2-ядерным процессором Intel или AMD имеет ряд преимуществ перед более мощным ноутбуком:

    • более длительная автономность за счет скромного энергопотребления;
    • более низкая стоимость ноутбука;
    • работа с 4 потоками (модели Intel Core с технологией Hyper-Threading).

    Кстати: производительность ноутбука зависит не только от процессора. Значительная роль отводится видеокарте и оперативной памяти (объем не менее 4 ГБ).

    Первые компьютерные процессоры с несколькими ядрами появились на потребительском рынке ещё в середине двухтысячных, но множество пользователей до сих пор не совсем понимает — что это такое, многоядерные процессоры, и как разобраться в их характеристиках.

    Видео-формат статьи «Вся правда о многоядерных процессорах»

    Простое объяснение вопроса «что такое процессор»

    Микропроцессор — одно из главных устройств в компьютере. Это сухое официальное название чаще сокращают до просто «процессор») . Процессор — микросхема, по площади сравнимая со спичечным коробком . Если угодно, процессор — это как мотор в автомобиле. Важнейшая часть, но совсем не единственная. Есть у машины ещё и колёса, и кузов, и проигрыватель с фарами. Но именно процессор (как и мотор автомобиля) определяет мощность «машины».

    Многие называют процессором системный блок — «ящик», внутри которого находятся все компоненты ПК, но это в корне неверно. Системный блок — это корпус компьютера вместе со всеми составляющими частями — жёстким диском, оперативной памятью и многими другими деталями.

    Функция процессора — вычисления . Не столь важно, какие именно. Дело в том, что вся работа компьютера завязана исключительно на арифметических вычислениях. Сложение, умножение, вычитание и прочая алгебра — этим всем занимается микросхема под названием «процессор». А результаты таких вычислений выводятся на экран в виде игры, вордовского файла или просто рабочего стола.

    Главная часть компьютера, которая занимается вычислениями — вот, что такое процессор .

    Что такое процессорное ядро и многоядерность

    Испокон процессорных «веков» эти микросхемы были одноядерными. Ядро — это, фактически, сам процессор. Его основная и главная часть. Есть у процессоров и другие части — скажем, «ножки»-контакты, микроскопическая «электропроводка» — но именно тот блок, который отвечает за вычисления, называется ядром процессора . Когда процессоры стали совсем небольшими, то инженеры решили совместить внутри одного процессорного «корпуса» сразу несколько ядер.

    Если представить процессор в виде квартиры, то ядро — это крупная комната в такой квартире. Однокомнатная квартира — это одно процессорное ядро (крупная комната-зал), кухня, санузел, коридор… Двухкомнатная квартира — это уже как два процессорных ядра вместе с прочими комнатами. Бывают и трёх-, и четырёх, и даже 12-комнатные квартиры. Также и в случае с процессорами: внутри одного кристалла-«квартиры» может быть несколько ядер-«комнат».

    Многоядерность — это разделение одного процессора на несколько одинаковых функциональных блоков. Количество блоков — это число ядер внутри одного процессора.

    Разновидности многоядерных процессоров

    Бытует заблуждение: «чем больше ядер у процессора — тем лучше». Именно так стараются представить дело маркетологи, которым платят за создание такого рода заблуждений. Их задача — продавать дешёвые процессоры, притом — подороже и в огромных количествах. Но на самом деле количество ядер — далеко не главная характеристика процессоров.

    Вернёмся к аналогии процессоров и квартир. Двухкомнатная квартира дороже, удобнее и престижнее однокомнатной. Но только если эти квартиры находятся в одном районе, оборудованы одинаково, да и ремонт у них схожий. Существуют слабенькие четырёхядерные (а то и 6-ядерные) процессоры, которые значительно слабее двухядерных. Но поверить в это сложно: ещё бы, магия крупных чисел 4 или 6 против «какой-то» двойки. Однако именно так и бывает весьма и весьма часто. Вроде как та же четырёхкомнатная квартира, но в убитом состоянии, без ремонта, в совершенно отдалённом районе — да ещё и по цене шикарной «двушки» в самом центре.

    Сколько бывает ядер внутри процессора?

    Для персональных компьютеров и ноутбуков одноядерные процессоры толком не выпускаются уже несколько лет, а встретить их в продаже — большая редкость. Число ядер начинается с двух. Четыре ядра — как правило, это более дорогие процессоры, но отдача от них присутствует. Существуют также 6-ядерные процессоры, невероятно дорогие и гораздо менее полезные в практическом плане. Мало какие задачи способны получить прирост производительности на этих монструозных кристаллах.

    Был эксперимент компании AMD создавать и 3-ядерные процессоры, но это уже в прошлом. Получилось весьма неплохо, однако их время прошло.

    Кстати, компания AMD также производит многоядерные процессоры, но, как правило, они ощутимо слабее конкурентов от Intel. Правда, и цена у них значительно ниже. Просто следует знать, что 4 ядра от AMD почти всегда окажутся заметно слабее, чем те же 4 ядра производства Intel.

    Теперь вы знаете, что у процессоров бывает 1, 2, 3, 4, 6 и 12 ядер. Одноядерные и 12-ядерные процессоры — большая редкость. Трёхядерные процессоры — дело прошлого. Шестиядерные процессоры либо очень дороги (Intel), либо не такие уж сильные (AMD), чтобы переплачивать за число. 2 и 4 ядра — самые распространённые и практичные устройства, от самых слабых до весьма мощных.

    Частота многоядерных процессоров

    Одна из характеристик компьютерных процессоров — их частота. Те самые мегагерцы (а чаще — гигагерцы). Частота — важная характеристика, но далеко не единственная . Да, пожалуй, ещё и не самая главная. К примеру, двухядерный процессор с частотой 2 гигагерца — более мощное предложение, чем его одноядерный собрат с частотой 3 гигагерца.

    Совсем неверно считать, что частота процессора равна частоте его ядер, умноженной на количество ядер. Если проще, то у 2-ядерного процессора с частотой ядра 2 ГГц общая частота ни в коем случае не равна 4 гигагерцам! Даже понятия «общая частота» не существует. В данном случае, частота процессора равна именно 2 ГГц. Никаких умножений, сложений или других операций.

    И вновь «превратим» процессоры в квартиры. Если высота потолков в каждой комнате — 3 метра, то общая высота квартиры останется такой же — всё те же три метра, и ни сантиметром выше. Сколько бы комнат не было в такой квартире, высота этих комнат не изменяется. Так же и тактовая частота процессорных ядер . Она не складывается и не умножается.

    Виртуальная многоядерность, или Hyper-Threading

    Существуют ещё и виртуальные процессорные ядра . Технология Hyper-Threading в процессорах производства Intel заставляет компьютер «думать», что внутри двухядерного процессора на самом деле 4 ядра. Очень похоже на то, как один-единственный жёсткий диск делится на несколько логических — локальные диски C, D, E и так далее.

    Hyper- Threading — весьма полезная в ряде задач технология . Иногда бывает так, что ядро процессора задействовано лишь наполовину, а остальные транзисторы в его составе маются без дела. Инженеры придумали способ заставить работать и этих «бездельников», разделив каждое физическое процессорное ядро на две «виртуальные» части. Как если бы достаточно крупную комнату разделили перегородкой на две.

    Имеет ли практический смысл такая уловка с виртуальными ядрами ? Чаще всего — да, хотя всё зависит от конкретных задач. Вроде, и комнат стало больше (а главное — они используются рациональнее), но площадь помещения не изменилась. В офисах такие перегородки невероятно полезны, в некоторых жилых квартирах — тоже. В других случаях в перегораживании помещения (разделении ядра процессора на два виртуальных) смысла нет вообще.

    Отметим, что наиболее дорогие и производительные процессоры класса Core i7 в обязательном порядке оснащены Hyper- Threading . В них 4 физических ядра и 8 виртуальных. Получается, что одновременно на одном процессоре работают 8 вычислительных потоков. Менее дорогие, но также мощные процессоры Intel класса Core i5 состоят из четырёх ядер, но Hyper Threading там не работает. Получается, что Core i5 работают с 4 потоками вычислений.

    Процессоры Core i3 — типичные «середнячки», как по цене, так и по производительности. У них два ядра и никакого намёка на Hyper-Threading. Итого получается, что у Core i3 всего два вычислительных потока. Это же относится и к откровенно бюджетным кристаллам Pentium и Celeron . Два ядра, «гипе-трединг» отсутствует = два потока.

    Нужно ли компьютеру много ядер? Сколько ядер нужно в процессоре?

    Все современные процессоры достаточно производительны для обычных задач . Просмотр интернета, переписка в соцсетях и по электронной почте, офисные задачи Word-PowerPoint-Excel: для этой работы подойдут и слабенькие Atom, бюджетные Celeron и Pentium, не говоря уже о более мощных Core i3. Двух ядер для обычной работы более чем достаточно. Процессор с большим количеством ядер не принесёт значительного прироста в скорости.

    Для игр следует обратить внимание на процессоры Core i3 или i5 . Скорее, производительность в играх будет зависеть не от процессора, а от видеокарты. Редко в какой игре потребуется вся мощь Core i7. Поэтому считается, что игры требуют не более четырёх процессорных ядер, а чаще подойдут и два ядра.

    Для серьёзной работы вроде специальных инженерных программ, кодирования видео и прочих ресурсоёмких задач требуется действительно производительная техника . Часто здесь задействуются не только физические, но и виртуальные процессорные ядра. Чем больше вычислительных потоков, тем лучше. И не важно, сколько стоит такой процессор: профессионалам цена не столь важна.

    Есть ли польза от многоядерных процессоров?

    Безусловно, да. Одновременно компьютер занимается несколькими задачами — хотя бы работа Windows (кстати, это сотни разных задач) и, в тот же момент, проигрывание фильма. Проигрывание музыки и просмотр интернета. Работа текстового редактора и включённая музыка. Два процессорных ядра — а это, по сути, два процессора, справятся с разными задачами быстрее одного. Два ядра сделают это несколько быстрее. Четыре — ещё быстрее, чем два.

    В первые годы существования технологии многоядерности далеко не все программы умели работать даже с двумя ядрами процессора. К 2014 году подавляющее большинство приложений отлично понимают и умеют пользоваться преимуществами нескольких ядер. Скорость обработки задач на двухядерном процессоре редко увеличивается в два раза, но прирост производительности есть почти всегда.

    Поэтому укоренившийся миф о том, что, якобы, программы не могут использовать несколько ядер — устаревшая информация. Когда-то действительно было так, сегодня ситуация улучшилась кардинально. Преимущества от нескольких ядер неоспоримы, это факт.

    Когда меньше ядер у процессора — лучше

    Не следует покупать процессор по неверной формуле «чем больше ядер — тем лучше». Это не так. Во-первых, 4, 6 и 8-ядерные процессоры ощутимо дороже своих двухядерных собратьев. Значительная прибавка в цене далеко не всегда оправдана с точки зрения в производительности. К примеру, если 8-ядерник окажется лишь на 10% быстрее CPU с меньшим количеством ядер, но будет в 2 раза дороже, то такую покупку сложно оправдать.

    Во-вторых, чем больше ядер у процессора, тем он «прожорливее» с точки зрения энергопотребления. Нет никакого смысла покупать гораздо более дорогой ноутбук с 4-ядерным (8-поточным) Core i7, если на этом ноутбуке будут обрабатываться лишь текстовые файлы, просматриваться интернет и так далее. Никакой разницы с двухядерником (4 потока) Core i5 не будет, да и классический Core i3 лишь с двумя вычислительными потоками не уступит более именитому «коллеге». А от батарейки такой мощный ноутбук проработает гораздо меньше, чем экономичный и нетребовательный Core i3.

    Многоядерные процессоры в мобильных телефонах и планшетах

    Мода на несколько вычислительных ядер внутри одного процессора касается и мобильных аппаратов. Смартфоны вместе с планшетами с большим количеством ядер почти никогда не используют все возможности своих микропроцессоров. Двухядерные мобильные компьютеры иногда действительно работают чуть быстрее, но 4, а тем более 8 ядер — откровеннейший перебор. Аккумулятор расходуется совершенно безбожно, а мощные вычислительные устройства попросту простаивают без дела. Вывод — многоядерные процессоры в телефонах, смартфонах и планшетах — лишь дань маркетингу, а не насущная необходимость. Компьютеры — более требовательные устройства, чем телефоны. Два процессорных ядра им действительно нужны. Четыре — не помешают. 6 и 8 — излишество в обычных задачах и даже в играх.

    Как выбрать многоядерный процессор и не ошибиться?

    Практическая часть сегодняшней статьи актуальна на 2014 год. Вряд ли в ближайшие годы что-то серьёзно поменяется. Речь пойдёт только о процессорах производства Intel. Да, AMD предлагает неплохие решения, но они менее популярны, да и разобраться в них сложнее.

    Заметим, что таблица основана на процессорах образца 2012-2014 годов. Более старые образцы имеют другие характеристики. Также мы не стали упоминать редкие варианты CPU, например — одноядерный Celeron (бывают и такие даже сегодня, но это нетипичный вариант, который почти не представлен на рынке). Не следует выбирать процессоры исключительно по количеству ядер внутри них — есть и другие, более важные характеристики. Таблица лишь облегчит выбор многоядерного процессора, но конкретную модель (а их десятки в каждом классе) следует покупать только после тщательного ознакомления с их параметрами: частотой, тепловыделением, поколением, размером кэша и другими характеристиками.

    Процессор Количество ядер Вычислительные потоки Типичная область применения
    Atom 1-2 1-4 Маломощные компьютеры и нетбуки. Задача процессоров Atom — минимальное энергопотребление. Производительность у них минимальна.
    Celeron 2 2 Самые дешёвые процессоры для настольных ПК и ноутбуков. Производительности достаточно для офисных задач, но это совсем не игровые CPU.
    Pentium 2 2 Столь же недорогие и малопроизводительные процессоры Intel, как и Celeron. Отличный выбор для офисных компьютеров. Pentium оснащаются чуть более ёмким кэшем, и, иногда, слегка повышенными характеристиками по сравнению с Celeron
    Core i3 2 4 Два достаточно мощных ядра, каждое из которых разделено на два виртуальных «процессора» (Hyper-Threading). Это уже довольно мощные CPU при не слишком высоких ценах. Хороший выбор для домашнего или мощного офисного компьютера без особой требовательности к производительности.
    Core i5 4 4 Полноценные 4-ядерники Core i5 — довольно дорогие процессоры. Их производительности не хватает лишь в самых требовательных задачах.
    Core i7 4-6 8-12 Самые мощные, но особенно дорогие процессоры Intel. Как правило, редко оказываются быстрее Core i5, и лишь в некоторых программах. Альтернатив им просто нет.

    Краткий итог статьи «Вся правда о многоядерных процессорах». Вместо конспекта

    • Ядро процессора — его составная часть. Фактически, самостоятельный процессор внутри корпуса. Двухядерный процессор — два процессора внутри одного.
    • Многоядерность сравнима с количеством комнат внутри квартиры. Двухкомнатные лучше однокомнатных, но лишь при прочих равных характеристиках (расположение квартиры, состояние, площадь, высота потолков).
    • Утверждение о том, что чем больше ядер у процессора, тем он лучше — маркетинговая уловка, совершенно неверное правило. Квартиру ведь выбирают далеко не только по количеству комнат, но и по её расположению, ремонту и другим параметрам. Это же касается и нескольких ядер внутри процессора.
    • Существует «виртуальная» многоядерность — технология Hyper-Threading. Благодаря этой технологии, каждое «физическое» ядро разделяется на два «виртуальных». Получается, что у 2-ядерного процессора с Hyper-Threading лишь два настоящих ядра, но эти процессоры одновременно обрабатывают 4 вычислительных потока. Это действительно полезная «фишка», но 4-поточный процессор нельзя считать четырёхядерным.
    • Для настольных процессоров Intel: Celeron — 2 ядра и 2 потока. Pentium — 2 ядра, 2 потока. Core i3 — 2 ядра, 4 потока. Core i5 — 4 ядра, 4 потока. Core i7 — 4 ядра, 8 потоков. Ноутбучные (мобильные) CPU Intel имеют иное количество ядер/потоков.
    • Для мобильных компьютеров часто важнее экономичность в энергопотреблении (на практике — время работы от батареи), чем количество ядер.

    Эпоха одноядерных процессоров уходит в прошлое. Уже сейчас CPU, оснащенные двумя вычислительными ядрами, начали активное наступление на сегмент рынка настольных компьютеров. А там, глядишь, и многоядерные подтянутся...

    В апреле-мае этого года в ИТ-индустрии произошли знаменательные события: монстры процессорного рынка AMD и Intel явили миру CPU с двумя вычислительными ядрами. Первой представила двухъядерные чипы для настольных ПК корпорация Intel: 11 апреля было официально объявлено о начале поставок процессора Pentium 4 Extreme Edition 840. Ответ AMD не заставил себя долго ждать, и уже 21 апреля компания представила три серверных двухъядерных процессора Opteron, а также торговую марку двухъядерных процессоров для настольных ПК - Athlon 64 X2, которые были официально презентованы 9 мая.

    Intel Pentium D

    Для корпорации Intel выпуск процессоров с двухъядерной архитектурой был фактически неизбежен, поскольку ядро Prescott на сегодня практически полностью исчерпало свой запас по тактовой частоте, ограниченный сверху величиной 4 ГГц. Первые двухъядерные процессоры Intel для настольных систем изготовлены на основе ядра Smithfield. Фактически оно состоит из двух ядер Prescott, выполненных на одном полупроводниковом кристалле. Туда же помещается арбитр, который следит за состоянием системной шины и помогает разделять доступ к ней между двумя CPU. Каждое из ядер имеет собственную кэш-память второго уровня размером 1 Мб. Все взаимодействие между ядрами в Smithfield происходит через системную шину.

    На данный момент выпускается два типа процессоров для настольных компьютеров: просто двухъядерные Pentium D и CPU для энтузиастов Pentium Extreme Edition. Двухъядерные процессоры упаковываются в корпус LGA775 и работают с частотой системной шины 800 МГц.

    Линейка CPU Pentium D представлена тремя моделями: 820, 830 и 840 с частотами соответственно 2,8, 3,0 и 3,2 ГГц. В элитарном секторе есть одна модель - Pentium Extreme Edition 840, процессорные ядра которого работают на частоте 3,2 ГГц. Отличие экстремального двухъядерника от остальных заключается в разблокированном коэффициенте умножения и включенной технологии Hyper-Threading, которая отключена в моделях линейки Pentium D. То есть операционной системой Pentium Extreme Edition будет определяться как четыре логических процессора. Основные характеристики новых CPU приведены в таблице 1.

    Стоит также заметить, что новое процессорное ядро наследует от Prescott весь набор современных технологий: поддержка 64-битных расширений EM64T, технология безопасности Execute Disable Bit и полный набор средств Demand Based Switching для управления тепловыделением и энергопотреблением, включающий технологии C1E (Enhanced Halt State), TM2 (Thermal Monitor 2) и EIST (Enhanced Intel SpeedStep). Последние три технологии не поддерживаются самой младшей двухъядерной моделью Pentium D 820, поскольку для их работы требуется динамическое изменение множителя процессора. Коэффициент умножения этого чипа (14x) является минимальным для CPU на основе Prescott и его производных.

    AMD Athlon 64 X2

    Двухъядерные процессоры производства компании AMD получили название Athlon 64 X2. Как видно из наименования, новые CPU имеют архитектуру AMD64, а "X2" свидетельствует о том, что в них присутствует два вычислительных ядра.

    Модельный ряд Athlon 64 X2 на сегодня включает в себя пять процессоров с рейтингами 3800+, 4200+, 4400+, 4600+ и 4800+, основные характеристики которых приведены в таблице 2. В их основе используются ядра с кодовыми именами Toledo и Manchester.

    Различия между ними заключаются в размере кэша второго уровня. Toledo имеет кэш L2 объемом 1 Мб на каждое ядро, а у Manchester этот показатель вдвое меньше - по 512 Кб на каждое ядро. Процессоры с рейтингами 4400+ и 4800+ построены на основе ядра Toledo и работают на частотах 2,2 и 2,4 ГГц соответственно. А CPU с рейтингами 3800+, 4200+ и 4600+ имеют ядро Manchester и тактовые частоты 2,0, 2,2 и 2,4 ГГц. Существуют также варианты построения последних трех упомянутых процессоров на основе ядра Toledo, но с отключенной половиной кэша.

    В отличие от Intel компания AMD не стала уменьшать частоту своих новых CPU. Как видим, тактовая частота самого быстрого двухъядерного процессора соответствует частоте старшей модели в линейке Athlon 64 (правда, существует более быстрый геймерский FX). Из этого следует, что даже в приложениях, не оптимизированных под многопоточность, Athlon 64 X2 будет демонстрировать очень хороший уровень производительности.

    Следует отметить, что подход к реализации двухъядерности в процессорах AMD несколько отличается от того, что был предложен на чипах Intel. Хотя, как и Pentium D, Athlon 64 X2 по сути представляет собой два процессора Athlon 64, объединенных на одном кристалле. Дело в том, что ядра в Smithfield общаются между собой посредством системной шины, а в Athlon 64 X2 реализован несколько иной метод.

    Еще на этапе разработки архитектуры AMD64 была предусмотрена возможность создания многоядерных процессоров. Каждое из ядер Athlon 64 X2 обладает собственным набором исполнительных устройств и выделенной кэш-памятью второго уровня, контроллер памяти и контроллер шины HyperTransport общий. А вот взаимодействие каждого из ядер с разделяемыми ресурсами происходит посредством специального коммутатора (Crossbar Switch) и интерфейса системных запросов (System Request Interface), в котором формируется очередь системных запросов (System Request Queue). И, что самое главное, на этом же уровне организовано и взаимодействие ядер между собой, благодаря чему вопросы когерентности кэшей решаются без дополнительной нагрузки на системную шину и шину памяти.

    Двухъядерные процессоры AMD не нуждаются в новых чипсетах и материнках, достаточно лишь обновить BIOS на уже существующих платах под Socket 939. Стоит также отметить, что удалось вписать в ранее установленные рамки для Athlon 64 и энергопотребление Athlon 64 X2. Новый процессор поддерживает технологии: AMD64 (поддержка 64-битных расширений), Enhanced Virus Protectionи (защита от некоторых типов вирусов), а также Cool`n`Quiet (предназначена для понижения тепловыделения и энергопотребления процессора).

    Тестирование

    В тестовую лабораторию редакции попали двухъядерные CPU обоих гигантов процессорного рынка - Intel Pentium D 820 и AMD Athlon 64 X2 4800+. Напрямую сравнивать эти процессоры между собой нет никакого смысла, поскольку они находятся в совершенно разных весовых категориях. В качестве оппонента с каждым двухъядерником был сопоставлен его одноядерный предок, работающий на такой же тактовой частоте, - Intel Pentium 4 520 и AMD Athlon 64 4000+.

    Тестирования проводились на стендах следующей конфигурации.

    • Материнская плата - ASUS A8N SLI Deluxe (чипсет nVIDIA nForce4 SLI);
    • Оперативная память - два модуля по 512 Мб Corsair DDR400;
    • Графические карта - 128 Мб ATi Radeon X600;
    • Системный HDD - SATA Maxtor 250 Гб;
    • Операционная система - Windows XP Pro, SP2.

    В данном тестировании мы исследовали изменение производительности в различных популярных приложениях при использовании систем на основе двухъядерного процессора вместо одноядерного. В качестве тестовых программ применялись приложения, входящие в состав пакета WorldBench 5. Результатом тестов является время (в секундах), потраченное на выполнение приложения.

    Результаты тестирования приведены в таблицах.


    Заключение

    Как видно из результатов тестирования, в большинстве приложений мы имеем незначительный прирост. Более солидный выигрыш мы получаем при запуске программ по обработке видео - Microsoft Windows Media Encoder 9.0 и Roxio VideoWave Movie Creator 1.5. Но лучше всего двухъядерные процессоры проявили себя при многозадачном тесте, когда одновременно запускается два приложения Mozilla и Windows Media Encoder. Причем отрыв Athlon 64 X2 4800+ от своего одноядерного предка составил 82,2%, а разница между процессорами Intel в этом тесте составила 47,1%. На первый взгляд, двухъядерность AMD эффективней, чем у Intel. Но не стоит забывать, что у Pentium 4 уже была псевдодвухъядерность в лице технологии Hyper-Threading. Может быть, именно поэтому прирост получился не такой солидный.

    Глядя на менее выдающиеся результаты остальных приложений, можно предположить, что эти программы просто не оптимизированы под многопоточность. Но ведь процессы развития аппаратных и программных средств никогда не шли параллельными курсами. Постоянно кто-то кого-то обгонял и, как правило, "железо" вырывалось вперед, а "софт" уже потом догонял. Поэтому можно предположить, что в скором будущем производители ПО постараются оптимизировать под многопоточность как можно большее количество своих продуктов. И вот тогда двухъядерные процессоры смогут в полной мере раскрыть свой потенциал.

    Оборудование для тестирования предоставлено представительствами компаний AMD и Intel в Украине.

    Похожие статьи