• Какие процессоры amd можно разогнать. Лучшие программы для разгона процессора AMD

    13.11.2020

    О них даже говорить не хочется. Двести долларов за AMD Athlon 64 3000+? Полгода назад над такими предсказаниями можно было только посмеяться, но лучше вызвать для пророка скорую психиатрическую помощь. Увидев такой ценник, надо было смело бить витрины – любой суд бы оправдал. Сейчас рассмеяться не получится – скулы сводит, такие цены стали реальностью.

    В недавней новости о дефиците процессоров AMD есть, на первый взгляд, обнадёживающая, но страшная, по сути, фраза: "...в данном случае подвели партнёры, переговоры с ними уже ведутся, и в следующем квартале AMD рассчитывает решить проблему". Когда-когда? Не завтра? Не после Нового Года? Не через месяц? В следующем квартале? То есть по нормальным ценам процессоры AMD можно будет купить только месяца через четыре, а то и через полгода?

    Даже не знаю, что вам сказать... Не покупайте компьютеры вообще? Не получится... Покупайте процессоры Intel Pentium 4 с номинальной частотой шины 533 МГц, поскольку они не дорожают? Но у них производительность ниже, даже при хорошем разгоне... Есть надежда, что новые процессоры Intel на ядрах Presler и CedarMill, основанные на 0.065 мкм техпроцессе, смогут порадовать хорошим разгоном при умеренном энергопотреблении и температуре. Если это действительно так и с самого начала 2006-го года Intel сможет обеспечить этими процессорами всех желающих, то доля AMD в наших компьютерах существенно сократится. Всё наработанное за последние годы можно потерять в одночасье. Какими бы хорошими ни были процессоры AMD, но если цена на них высока или, что намного хуже, их просто нет в продаже, то вполне естественно обратить внимание на процессоры конкурента. А если они ещё и разгоняться будут лучше Prescott степпинга E0...

    Цена на новые процессоры Intel должна быть не выше, чем у старых – традиционно компания по инерции (а может, исходя из трезвого и дальновидного расчёта) берёт дополнительные деньги только за увеличение тактовой частоты, а новые технологии отдаёт даром. Это нам на руку – с помощью разгона мы практически бесплатно увеличим частоту и так же бесплатно (вернее, по той же цене) получим новый техпроцесс. Я полагал, что только новое поколение процессоров Intel, отказавшееся от NetBurst-архитектуры, сможет вернуть компании былую славу. Однако возможно, что в свете текущей ситуации это произойдёт гораздо раньше. Очень может быть, что Presler и CedarMill станут первыми процессорами Intel, за которые будет не очень стыдно их владельцам, с момента появления печально известного ядра Prescott.

    Если всё так и произойдёт, то я тоже встану в очередь за новыми процессорами Intel, пока же предлагаю вернуться к реальности и оценить возможности тройки AMD Athlon 64 X2 3800+. Все они относятся к одной партии и выпущены на 41-ой неделе этого года, о чём говорит вторая строка маркировки: CCB2E 0541XPMW . Зная первую строку – ADA3800AA5CD – мы можем выяснить характеристики процессоров на сайте AMD:

    Итак, это процессоры, сделанные на уменьшенном вдвое по объёму кэш-памяти ядре Toledo, о неплохом оверклокерском потенциале которых нам говорили ещё летом.

    Утилита CPU-Z утверждает, что процессоры основаны на ядре Manchester, формально это так, но правильнее было бы сказать Toledo/512. Именно таким образом определяют процессоры утилиты OverSoft CPU Informer 0.95 и RM CPU Clock Utility 1.8, однако они не смогли правильно показать частоту при включении технологии Cool"n"Quiet.

    В конфигурации нашего открытого тестового стенда не появилось никаких новых элементов:

    • Материнская плата – Abit Fatal1ty AN8 SLI, rev. 1.0, BIOS 19;
    • Память – 2x512 MB Corsair CMX512-4400C25;
    • Жёсткий диск – Western Digital Raptor WD740GD;
    • Кулер – Zalman CNPS9500 LED;
    • Термопаста – Zalman;
    • Блок питания – SilverStone Zeus ST65ZF (650W);
    • Операционная система – WinXP SP2.

    Не изменилась и методика проверки: уменьшаем частоту работы памяти и шины HyperTransport, отбираем лучший экземпляр из тройки с помощью экспресс-теста SuperPi, после чего проводим с ним более детальные тесты.

    Моё сердце покорил уже первый процессор. Он с лёгкостью заработал при номинальном напряжении 1.35 В и множителе х10 на частоте тактового генератора 260 МГц, но уже при 265 МГц не проходил тесты. Второй процессор, его серийный номер отличался от первого всего на несколько единиц, оказался чуть хуже – на частоте 260 МГц проходил тест SuperPi, а при 265 был уже не в состоянии загрузить Windows. Третий процессор относился к той же партии, но его серийный номер отличался уже на несколько сотен, именно он и оказался лучшим, выполнив тест в SuperPi на частоте 275 МГц. На этой частоте он не смог пройти проверку в S&M 1.7.6 beta, но выдержал её при частоте 270 МГц.

    Я был просто в восторге – два ядра на частоте 2.7 ГГц при номинальном напряжении 1.35 В – фантастика! Температура во время проверки утилитой S&M при 100%-ной нагрузке в режиме "норма" поднялась всего до 53°C при комнатных 21°.

    Кстати, я попытался использовать для тестов новомодную утилиту OCCT. Не знаю, что она проверяет и как работает, но, в отличие от S&M, грузит только одно ядро, а в двух экземплярах она не запустилась. Во время теста температура повысилась лишь до 41°C.

    Не стал бы слепо доверять показаниям температуры процессора на плате Abit Fatal1ty AN8 SLI. Некоторое время назад они были скорректированы в BIOS и кажутся мне несколько заниженными, хотя бы потому, что в покое температура опускалась до 28°C – маловато что-то... Впрочем, это не так важно. Главное, что температура в пределах нормы, а процессор стабильно работает на частоте 2.7 ГГц. Я уже предвкушал такой же лёгкий разгон до 2.9 ГГц, а то и выше, но оказалось, что на повышение напряжения процессор отзывается очень слабо. 2.8 ГГц – это максимальная частота стабильной работы, причём напряжение потребовалось поднять всего на 0.1 В, до 1.45 В.

    При разогреве утилитой S&M температура повысилась до 62.6°C.

    Итак, тесты завершены, но мне безумно не хотелось расставаться с таким чудесным процессором, хотя днём ранее я даже не думал о перспективе апгрейда. Мрачное вступление к этой заметке портит впечатление и не даёт возможности передать почти фанатский восторг от такого лёгкого и воодушевляющего разгона. Разуму пришлось выдержать нелёгкую борьбу с Внутренним Голосом.

    Во-первых, процессор вовсе не дешёвый. (А как же подарок себе к Новому Году? Новый Год, подарки – это святое!) Во-вторых, в следующем году грядёт переход на новый сокет M2. Кстати, возможно, что процессоры AMD Athlon 64 X2 3800+ на него так и не перейдут, оставшись на Socket 939. (Сам-то понял, что глупость сморозил? При чём тут сокеты и переходы? У тебя уже сейчас будет новый распрекрасный двойной процессор, с лёгкостью работающий на частоте 2.7 ГГц. Появятся новые процессоры – вот тогда на них и посмотрим. Подарки себе можно и в середине года покупать.) А самое главное – не нужен мне сейчас процессор с двумя ядрами. Нет у меня таких задач, с которыми не справился бы одноядерный.

    Внутренний Голос ничего не смог возразить и на этот раз мне удалось удержаться от незапланированного апгрейда. Вы же обратите внимание на AMD Athlon 64 X2 3800+, если двухъядерные процессоры вам действительно необходимы. Аналогичные процессоры Intel Pentium D на ядре SmithField имеют только одно преимущество – более низкую цену. В статье "Обзор AMD Athlon 64 X2 3800+: двухъядерность и 64-битность идут в массы " наглядно показана мощь двойных процессоров от AMD. В тот раз процессор с ядром ревизии E4 смог разогнаться всего лишь до 2.4 ГГц и то выглядел очень достойно. Наш сегодняшний экземпляр с разгоном до 2.7 ГГц разорвал бы всех соперников на маленькие кремниевые крошки.

    Конечно же, инженеры AMD не могли позволить себе такую роскошь, как убрать защиту от разгона. Новый Athlon XP/MP на ядре Palomino - прекрасный пример высококачественной работы, на какую только способен производитель чипов. Если вы теперь пожелаете соединить мостики L1 обычным карандашом, это уже не поможет. Как мы помним, такой способ был весьма действенен на прошлых Athlon с ядром Thunderbird. Таким образом, рассеялись мечты крутых "разгонщиков", которые еще до покупки процессора строили планы насчет разгона.

    Что же изменилось с приходом Palomino? Кроме добавления новых мостиков L, на процессоре с помощью лазера были выжжены ямки. Ямки затрудняют соединение контактов (при помощи, скажем, того же карандаша) для снятия защиты. С технической же точки зрения защита у старого Athlon и новых Athlon XP/MP не изменилась.

    И хотя мы обнаружили несколько технических особенностей во время тестирования, все что вам нужно сделать для разгона - соединить контакты L1. Это разблокирует множитель, заданный на заводе с помощью мостиков L3 и L4.

    После того, как мы соединили контакты L1, AMD Athlon 1900+ без проблем работал на 1666 МГц (2000+).

    После многочисленных проб и ошибок, учитывая советы наших читателей, в итоге у нас получилось ясное пошаговое руководство, которое поможет пользователям снять защиту множителя на Athlon XP. И это не все. Кроме этого мы добавили тестирование "нового" процессора, чтобы вы могли оценить прирост производительности.

    Время, которое потребуется на снятие множителя - около 30 минут. После этого вы сможете разогнать процессор, изменяя его множитель. Мы не учитываем разгон с помощью увеличения частоты FSB, потому что это приводит к росту частот шин AGP и PCI, что не лучшим образом сказывается на стабильности.

    Загрузочный экран с разогнанным Athlon XP:
    BIOS опознала его как Athlon XP 2000+,
    хотя мы не увидим этот процессор еще 6 недель или около того.


    Пошаговая инструкция

    Перед началом всей операции убедитесь, что ваша материнская плата может изменять множитель либо в BIOS, либо через переключатели на плате (последний вариант наиболее часто встречается на Socket A материнских платах с чипсетами VIA KT133A, VIA KT266A, SiS 735). В нашем тестировании по соединению контактов L1 мы использовали несколько процессоров Athlon XP. Из материнских плат была выбрана Epox EP-8KHA+, которая позволяет управлять множителем через BIOS.

    Для соединения контактов L вам понадобятся следующие инструменты:

    • Проводящий цапоновый лак, которым мы собственно и соединяли контакты
    • Скотч для изоляции и разделения
    • Суперклей (или что-то подобное) для заполнения выжженных ямок
    • Скальпель для удаления остатков клея (на Tom"s Hardware использовали нож для бумаги)
    • Авометр/мультиметр для измерения сопротивления


    Внешний вид Athlon XP 1900+.
    Стрелка указывает на контакты L1, с которыми и будет производиться операция.


    Почему не работает соединение карандашом?

    В отличие от обычного Athlon (керамическая подложка с ядром Thunderbird), на котором контакты L1 легко соединялись с помощью обычного карандаша, в Palomino AMD встроила более хитрую защиту. Если на старом Athlon Thunderbird сопротивление между землей и нижним рядом контактов L1 приближалось к бесконечности, то на новом Athlon XP (ядро Palomino, органическая упаковка) сопротивление оказалось равным 945 Ом (около 1 кОм).

    По этой причине карандаш и не будет работать: если соединить L1 контакты карандашом, сопротивление графита будет слишком высоким. Соответственно ток по мостикам не пойдет, и контакты окажутся разомкнутыми. Другими словами, AMD и с этой стороны постаралась усложнить жизнь разгонщикам. Единственный выход из такой ситуации - использовать вещество с минимальным сопротивлением, например, проводящий цапоновый лак, который можно купить в магазине радиотоваров.

    Сопротивление между землей и контактами L1 было снижено до примерно 1 кОм - карандаш уже не работает.

    Старый Athlon Thunderbird: мы измерили сопротивление графитового мостика, выполненного с помощью карандаша. Как видите, оно выше 1 кОм, однако в этом случае все будет работать.

    Еще одно измерение показало, что символы "L1", "L2" и треугольник (обведены синим) заземлены. Следует избегать случайного протекания лака до этих точек, иначе все ваши усилия пойдут насмарку.


    Вот и наш секрет - закрываем контакты

    Перед упражнениями с лаком следует заполнить выжженные лазером ямки. Если цапоновый лак протечет в эти ямки, вы опять же столкнетесь с проблемой ненужного заземления. Невооруженным взглядом трудно заметить заземленную медную пластинку, замыкающую ямку снизу.

    Во-первых, следует закрыть контакты L1 (верхний и нижний ряды) кусочком скотча или чем-нибудь подобным. Это позволит отделить ямки от контактов для следующего этапа - заполнение ямок суперклеем.


    Внешний вид контактов L1 на Athlon XP 1900+


    То же самое при сильном увеличении

    Будьте аккуратны. Внимательно проверьте соединение ленты и подложки по всей длине, чтобы клей не проник, куда не следует.


    Используем суперклей - изолируем ямки

    Как только контакты были полностью изолированы скотчем, можно применять суперклей. Внимательно следите за количеством клея, чтобы лишь небольшая часть выдавилась на процессор.

    Добавляем суперклей на открытый участок между контактами L1

    Увеличенное изображение ямок, заполненных клеем


    Удаляем скотч и остатки клея

    Подождите 10 минут для полного высыхания клея. Далее аккуратно снимите скотч и используйте скальпель для аккуратного удаления остатков клея.

    Удаление остатков клея между контактами L1 с помощью ножа для бумаги


    Второй раз закрываем контакты - применяем проводящий цапоновый лак для создания мостиков L1

    Теперь настало время соединить контакты L1 (попарно верхний с нижним), используя проводящий цапоновый лак. Вам опять же придется закрывать часть контактов скотчем, иначе лак может попасть на ненужные места. Во-первых, прикрепите скотч по обеим сторонам будущего L1 мостика (на картинке ниже - сверху-вниз). Во-вторых, закройте все лишнее кроме мостика, наложив полоски скотча в горизонтальном направлении (на рисунке ниже - слева-направо). Учитывая несколько неудачных попыток (включая сломанные процессоры), мы настоятельно рекомендуем следовать нашим инструкциям.

    Каждый мостик "наводится" индивидуально, чтобы удостовериться в точном нанесении цапонового лака. На картинке вы можете заметить, как точно следует окружать контакт скотчем. Иначе вы не сможете правильно соединить контакты. После закрывания лишних мест, нанесите лак с помощью маленькой кисточки.

    Проводящий цапоновый лак, который можно купить в магазине радиотоваров.


    Нанесение лака на самодельное "окно" в пленке.
    Фактически окно будет полностью заполнено лаком.


    Увеличенное изображение первого мостика, наведенного с помощью лака

    Сейчас вам следует убрать пленку, и вы получите достаточно хорошее соединение. Выполняйте аналогичную процедуру для каждой оставшейся пары контактов, до тех пор, пока все мостики L1 не будут замкнуты. Далее измерьте сопротивление получившихся мостиков (от нижнего контакта к верхнему). Сопротивление должно приближаться к 0 Ом! Проверьте еще раз, не произошло ли случайного соединения соседних мостиков между собой. Если вы обнаружите такое соединение, его следует аккуратно разомкнуть, используя скальпель. При измерении сопротивления не давите сильно на щуп, иначе вы можете сколупнуть лак.

    Мостики, конечно же, можно снять. Для этого вам понадобится твердый ластик. Потом вы можете проделать процедуру наведения мостиков еще раз.


    Проба Athlon XP 1900+, разогнанного до 2000+

    Итак, контакты соединены должным образом (для лучшей сохранности вы можете заклеить контакты скотчем). Настало время поместить процессор на материнскую плату, в нашем случае на Epox EP-8KHA+ с чипсетом VIA KT266A. На следующей иллюстрации видно, что множитель можно спокойно изменять.


    Множитель теперь можно спокойно изменять из BIOS

    В BIOS не доступен множитель 12,5X - в качестве такового процессор интерпретирует 13X. Полагаем, специалисты из Epox исправят эту ситуацию в будущем.


    Изменяем напряжение на ядре в BIOS для разгона

    Как видите, для успешного разгона Athlon XP 1900+ до 2000+ нам пришлось поднять напряжение на ядре до 1,85 В.


    Картинка с новой тактовой частотой и множителем под Windows 98. После того, как BIOS покажет частоту Athlon XP, равную 1666 МГц (Athlon XP 2000+), вы можете загружать операционную систему (в нашем случае Windows 98SE). Как видим, популярное в народе средство WCPUID показывает следующие данные: частота ядра 1666 МГц, множитель 12,5X, частота FSB 133 МГц. Разгон удался.


    Ситуация не изменилась и под Windows XP


    Установки множителя и напряжения

    Для самых любознательных мы приготовили две таблицы зависимости значений множителя и напряжения от замыкания соответствующих мостиков.


    Расшифровка значений мостиков для изменения множителя

    Если ваша материнская плата поддерживает разгон (например, позволяет выставлять множитель в BIOS), то замыкание L1 мостиков для вас будет самым удобным решением. Выше мы досконально описали этот процесс. Изначально же процессор поставляется с разомкнутыми мостиками L1. При этом множитель выставляется мостиками L3 и L4. Но если вы захотите изменять эти мостики, вы не сможете вернуть все как было. Поэтому мы и не приводим инструкции для работы с мостиками L3 и L4.


    Расшифровка значений мостиков L11
    для регулировки напряжения на ядре

    Материнские платы, поддерживающие разгон, обычно позволяют вручную изменять напряжение на ядре. Если же ваша материнская плата осуществляет только автоматическое выставление напряжения, вам придется найти способ увеличить напряжение для нормального разгона.


    Ошибки

    Перед тем, как найти лучший метод "наведения" мостиков, нам пришлось пройти путем проб и ошибок. Самой большой проблемой было создание окна для отдельного мостика. Первоначально мы использовали бумагу, которая плохо уживается с цапоновым лаком. К тому же при этом нет гарантии, что бумага плотно прилегает к подложке. Если вы капнете лаком в окно из бумаги, то лак легко пройдет за бумагу, размажется по поверхности и вся ваша работа летит коту под хвост.


    Ошибочная попытка создания окна для мостика L1, используя бумагу


    Увеличенная картинка ясно показывает неаккуратное соединение мостиков

    Соединение карандашом с Athlon XP больше не работает. Рядом показано увеличенное изображение мостиков. Но сопротивление таких мостиков слишком велико, поэтому такое соединение не действует. Как мы уже говорили, сопротивление мостика превышает 1 кОм, и по нему не идет ток. На старом же Athlon Thunderbird сопротивление между нижними контактами L1 и землей было близко к бесконечности, поэтому ток все же проходил по графитовым мостикам.

    Если же вы при нанесении клея досконально не проверите прилегание скотча к подложке, вы можете столкнуться со следующей ситуацией.

    На этой иллюстрации слой клея простирается далеко за ямки,
    даже частично закрывая контакты

    Ситуацию пришлось выправлять таким вот образом

    Слово «разгон» прочно вошло в лексикон владельцев ПК, да и в компьютерных журналах и статьях в Интернете оно встречается довольно часто. Тем не менее многие пользователи не представляют, как именно осуществляется разгон процессора, или же испытывают в этом затруднения при смене платформы с Athlon XP или Pentium 4/Celeron на Athlon 64. Новые материнские платы имеют свои особенности, оказывающие влияние на оверклокинг, из-за чего попытки заставить работать процессор в форсированном режиме иногда оказываются безуспешными. В этой статье мы дадим ряд рекомендаций по разгону платформы AMD64, которые пригодятся «начинающим энтузиастам».

    В первую очередь рассмотрим, чем принципиально отличается Athlon 64 от Athlon XP или Pentium 4/Celeron в том, что касается разгона: данный процессор соединен с северным мостом на материнской плате специальной шиной HyperTransport, которая работает на 800/1000 MHz, и если раньше частота процессора являлась произведением частоты шины и коэффициента CPU, то теперь этот показатель определяется путем умножения коэффициента CPU на частоту задающего генератора материнской платы. По умолчанию генератор выдает 200 MHz, частота же шины HyperTransport, как и процессора, регулируется соответствующим множителем. Тем не менее некоторые производители материнских плат продолжают называть пункт выбора частоты генератора выбором частоты шины, что не совсем корректно.

    Теперь перейдем к особенностям разгона. Во-первых, частоты шин PCI и AGP также по умолчанию привязаны к частоте генератора. Поэтому, если не задать их явно в соответствующих пунктах BIOS, то при разгоне они будут расти. Работающие на этих шинах видеокарта, контроллер жестких дисков, сетевая карта и другие устройства плохо переносят повышенные частоты и могут выйти из строя. К сожалению владельцев материнских плат на базе VIA K8T800, данный чипсет не умеет фиксировать частоты шин PCI/AGP при разгоне. Обладатели же плат на nForce3/4 могут в BIOS изменить эти частоты вручную.

    Другой особенностью разгона Athlon 64 является способ установки частоты шины памяти. Если владельцы плат на nForce2 могли жестко задать этот параметр независимо от частоты шины процессора, то теперь он тоже привязан к частоте генератора. Поэтому пункт в BIOS Setup, именуемый Memory Frequency – DDR400, на самом деле означает, что частота шины памяти совпадает с частотой задающего генератора и при разгоне также будет расти. Остальные же режимы памяти – DDR333, 266, 200 – реализованы посредством делителей, которые составляют приблизительно 1,22; 1,55 и 2. Поясним это на примере: установив в BIOS частоту генератора 244 MHz и задав тип памяти DDR333, мы получим частоту 244: 1,22 = 200 MHz (DDR400).

    Для разгона полезно уменьшить множитель для шины HyperTransport до трех, поскольку частота ее также возрастает и становится дополнительной причиной нестабильности. Тех, кого волнует вопрос «А не скажется ли понижение частоты HyperTransport на производительности системы?», можем успокоить – пропускной способности данной шины хватает с головой даже в таком варианте.

    Рассмотрим теперь разгон процессора Athlon 64 на практике. В качестве тестового стенда использовалась материнская плата ASUS A8N-E на чипсете nForce4 Ultra, процессор AMD Athlon 64 3000+ с реальной частотой 1800 MHz на ядре Venice, два модуля памяти Transcend DDR400 (тайминги 2,5-3-3-8), видеокарта NVIDIA GeForce 6600, разогнанная до 430/630 MHz.

    Итак, в BIOS заходим на вторую вкладку, называемую Advanced, а затем – в пункт CPU Configuration. Здесь мы понижаем множитель шины HyperTransport, изменив значение HyperTransport Frequency с Auto на 3X. Дальше заходим в подпункт DRAM Configuration и меняем значение Timing Mode с Auto на Manual. После этого становится доступен пункт Memclock index value. В нем устанавливаем DDR266 вместо DDR400, дабы память не оказалась ограничивающим фактором при разгоне, что позволит нам достичь частоты генератора не меньше 300 MHz.

    Возвращаемся на самый верхний уровень и заходим в JumperFree Configuration. По умолчанию настройки частоты задающего генератора недоступны, но после установки в Overclock Profile значения Manual появляется пункт CPU Frequency. Частота процессора, которая может быть достигнута при разгоне, зависит во многом от везения пользователя – у каждого экземпляра она разная. В данном случае в предварительных тестах процессор запустился с частотой генератора 285 MHz вместо стандартных 200 MHz. Вообще частоту стоит увеличивать с шагом 20 MHz, поднимая ее до тех пор, пока система проходит тесты на стабильность. После этого имеет смысл уменьшить шаг до 1 MHz и более точно подобрать максимальную рабочую частоту. Кроме того, для повышения стабильности можно поднять напряжение на процессор в пункте CPU Voltage до 1,55 В. Также здесь следует установить максимальное значение CPU Multiplier вместо Auto (в нашем примере это х9) и изменить пункт PCI Clock Synchronization Mode с Auto на 33,33 MHz (ни за что не ставьте To CPU). Поскольку данная плата не имеет порта AGP, то больше ничего изменять не надо. В противном случае пришлось бы еще фиксировать 66 MHz в пункте AGP Clock. На некоторых материнских платах, правда, из-за ошибок в BIOS при разгоне может расти частота AGP и PCI даже при выборе стандартных значений частот шин вручную. Этого легко избежать, установив частоты для них 67 и 34 MHz соответственно. Также нередко пункты для частот AGP/PCI объединены в один, но частоты, несмотря на это, фиксируются для обеих шин. Название и расположение вышеописанных пунктов BIOS на других материнских платах могут различаться, но, тем не менее, принцип остается одинаковым, и найти нужные для разгона настройки не составит труда.

    В результате реальная частота процессора выросла со штатных 1800 MHz до 2565 MHz, т. е. увеличилась на 42,5%. Показатели прироста в обычных приложениях представлены на диаграммах и зависят от конкретной задачи.

    1800 MHz 2565 MHz Процент прироста
    3Dmark05, Video Marks 1024×768 2843 2897 1,90
    1024×1280 2309 2325 0,69
    3Dmark05, CPU Marks 4119 5146 24,93
    3Dmark01, Video Marks 1024×768 15382 17384 13,02
    SuperPi, c 46 35 23,91
    Doom3, FPS Ultra-High Quality 1024×768 58,8 59,8 1,70
    1024×1280 44,2 44,6 0,90
    High Quality 1024×768 69,4 71,7 3,31
    1024×1280 48,5 48,7 0,41
    FarCry, FPS Demo Research 1024×768 Minimal FPS 30,9 39,38 27,44
    Average FPS 46,22 51,47 11,36
    Maximum FPS 73,91 77,16 4,40
    1024×1280 Minimal FPS 28,79 29,63 2,92
    Average FPS 37,53 37,71 0,48
    Maximum FPS 50,97 52,35 2,71
    Demo Regulator 1024×768 Minimal FPS 27,81 35,32 27,00
    Average FPS 51,88 58,36 12,49
    Maximum FPS 81,97 87,3 6,50
    1024×1280 Minimal FPS 27,33 30,26 10,72
    Average FPS 40,85 41,97 2,74
    Maximum FPS 73,74 67,39 -8,61
    Demo Pier 1024×768 Minimal FPS 39,28 51,5 31,11
    Average FPS 58,52 72,84 24,47
    Maximum FPS 100,11 126,51 26,37
    1024×1280 Minimal FPS 35,31 33,58 -4,90
    Average FPS 51,95 55,37 6,58
    Maximum FPS 81,76 78,27 -4,27

    Все современные процессоры, включая AMD Athlon, имеют фиксированный множитель - коэффициент умножения частоты, связывающий внутреннюю и внешнюю частоту. Несмотря на возможность его изменения для процессоров этого типа с помощью изменения резисторов или использования технологического разъема, форсирование работы процессоров AMD Athlon осуществляется, как правило, за счет увеличения внешней частоты.

    Процессоры AMD Athlon имеют значительный технологический запас, допускающий повышение производительности за счет использования режимов разгона, например, повышения частоты шины процессора FSB EV6. Однако высокое значение последней ограничивает возможность разгона за счет ее увеличения. Обычно удается повысить частоту шины процессора не более чем на 10-15%. При этом предельная величина возможного увеличения частоты шины процессора FSB EV6 и, соответственно, прироста производительности компьютера зависит от используемой материнской платы.

    В соответствии с особенностями своей архитектуры процессоры AMD Athlon требуют специальных материнских плат с чипсетами, поддерживающими данные процессоры. В качестве примера можно привести следующие материнские платы: ASUS K7V, ASUS K.7M, Gigabyte GA-7IX. Платы обеспечивают стабильную работу процессоров AMD Athlon при условии использования источников питания не менее 235 Вт.

    Ниже представлены результаты выполненных исследований, связанных с анализом возможности работы в форсированном режиме высокопроизводительных процессоров AMD Athlon.

    Компьютер с процессором AMD Athlon-650

    По материалам и с разрешения www.ixbt.com.

    • Материнская плата: ASUS K7M (AMD 751+VT82C686A).
    • Процессор: AMD Athlon 650 (кэш-память L1 - 128 Кбайт, кэш-памят L2 - 512 Кбайт на плате процессора, работающая на 1/2 частоты ядр; процессора, стандартная тактовая частота FSB EV6 - 100 МГц при пере даче данных с частотой 200 МГц, напряжение ядра - 1,6 В, разъег Slot A).
    • Оперативная память: 128 Мбайт PC 100 SDRAM производства SE((CAS2).
    • Жесткий диск: IBM DJNA 372200.
    • Видеоадаптер: Chaintech Desperado AGP-RI40 (NVIDIA Riva TNT: 16 Мбайт SDRAM).
    • Звуковая карта: Creative Sound Blaster Live!. О ОС: Windows 98.

    Разгон

    В процессе разгона частота системной шины была увеличена с 100 МГц р 110 МГц. Дальнейшее повышение тактовой частоты шины приводило к н< стабильной работе системы, что, по-видимому, связано с особенностям архитектуры шины процессора EV6 и микросхемы AMD 751.

    Результаты тестирования приведены в таблице и на рис. 18.61.

    Результаты тестирования

    Процессор

    Частота FSB, МГц

    Частота CPU, МГц

    Quake3 1.09, demo2-fastest

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Рис. 18.61. Результаты тестирования Quake3 1.09, demo2-fastest для AMD Athlon 650

    Компьютеры с процессором AMD Athlon-700 (Thunderbird)

    Конфигурация системы, используемой в тестировании

    • Материнская плата: Abit KT7 (VIA Apollo KT133, VT8363+VT82C686A).
    • Процессор (рис. 19.70): AMD Athlon 700 (L1 кэш-память- 128 Кбай: 256 Кбайт L2 кэш-память на кристалле процессора, работает на частот ядра, стандартная частота FSB EV6 - 100 МГц и частота передачи дан ных 200 МГц, напряжение питания ядра - 1,7 В, Socket A (462 pins).
    • Оперативная память: 128 Мбайт, SDRAM, РС100.
    • Жесткий диск: IBM DPTA-372050 (20 Гбайт, 2 Мбайт кэш-памя™ U DM А/66).
    • Видеоадаптер: ASUS AGP-V3800 TV (видеочипсет TNT2, видеопамят 32 Мбайт).
    • Видеоадаптер: Creative Sound Blaster Live!. П Мощность источника питания: 250 Вт.
    • ОС: Windows 98 Second Edition.

    Рис. 18.62. Тестируемый процессор AMD Athlon 700 (Thunderbird)

    Основные параметры материнской платы Abit KT7 (важные для разгона)

    • Материнская плата Abit KT7 (рис. 19.71), которая была использована дл разгона процессора AMD Athlon 700, обладает следующими основным! важными для разгона, параметрами.
    • Процессоры: AMD Athlon (Thunderbird) и AMD Duron. Процессорны разъем Socket A (462 контакта). Стандартные значения тактовой частот; шины FSB - 100 МГц.
    • Overclocking: через BIOS Setup- 100, 101, 103, 105, 107, ПО, 112, 115, 117, 120, 122, 124, 127, 133, 136, 140, 145, 150, 155 МГц.
    • Напряжение на ядре: 1,1-1,85 В с шагом 0,25 В.
    • Установка множителя: через BIOS Setup.
    • Чипсет: VIA Apollo KT133 (VT8363+VT82C686A).
    • Оперативная память: до 1,5 Гбайт в 3 DIMM (168 pin; 3,3 В) РС100/133 SDRAM, частота - 100/133 МГц.
    • BIOS: Award Plug and Play BIOS.

    Рис. 18.63. Материнская плата Abit KT7

    Средства тестирования

    Средства охлаждения

    В качестве кулера был использован Titan TTC-D2T (рис. 18.63). Этот кулер обеспечивает эффективное охлаждение процессоров AMD Athlon (Thunderbird) и AMD Duron. Контроль над вентилятором выполняется встроенными средствами hardware monitoring микросхемы VT82C686A.

    Контроль за температурой процессора осуществляется с помощью жесткого термодатчика (рис. 18.64), расположенного на материнской плате, и средств hardware monitoring.

    Рис. 18.63. Кулер Titan TTC-D2T

    Рис. 18.64. Жесткий термодатчик на материнской плате.

    Разгон процессора посредством повышения частоты FSB

    Выбор тактовой частоты процессорной шины осуществляется средствами BIOS Setup. Тактовую частоту шины процессора удалось повысить до 115 МГц. Результаты разгона процессора посредством увеличения частоты процессорной шины FSB представлены в следующей таблице и диаграммах (рис. 18.65-18.66).

    Рис. 18.66. Результаты тестирования CPUmark 99 (разгон изменением частоты шины)

    Разгон процессора посредством изменения множителей

    Как известно, частотный множитель у процессоров AMD Athlon (Thunderbird) зафиксирован. Однако материнская плата Abit KT7 относится к тем платам, которые обеспечивают возможность его изменения. Несмотря на то, что с некоторого момента фирма AMD ограничила данную возможность, перерезая мостики L1 на поверхности корпуса процессора, в используемом экземпляре процессора эти мостики были замкнуты.

    Таким образом данный экземпляр процессора AMD Athlon (Thunderbird) не нуждался в процедуре восстановления мостиков L1, что можно проследить на рис. 19.76.

    Рис. 18.67. Мостики на процессоре Athlon

    Следует отметить, что выбор параметров разгона выполняется средствами BIOS Setup в SoftMenu. Результаты разгона, а также выбранные режимы представлены в следующей таблице и диаграммах (рис. 18.67, 18.68).

    Разгон процессора Athlon (материнская плата Abit KT7)

    Рис. 18.69. Результаты тестирования CPUmark 99 (разгон посредством изменения множителя)

    Рис. 18.70. Результаты тестирования FPU WinMark (разгон посредством изменения множителя)

    Разгон посредством изменения множителя и частоты шины

    Необходимо отметить, что максимальные уровни производительности достигаются выбором оптимальных значений для тактовой частоты шины процессора при соответствующих значениях частотных множителей, т. е. при комбинированном разгоне.

    Далее, в следующих таблицах и диаграммах (рис. 19.79, 19.80), представлены данные по разгону процессора AMD Athlon 700. Несмотря на то, что процессор Athlon 700 удалось разогнать лишь до частоты 825 МГц, в результате было достигнуто существенное повышение производительности системы.

    Разгон процессора Athlon (материнская плата Abit KT7)

    Рис. 18.71. Результаты тестирования CPUmark 99 (комбинированный разгон)

    Рис. 19.72. Результаты тестирования FPU WinMark (комбинированный разгон)

    Лучшая программа для разгона процессора AMD позволит вашему компьютеру работать значительно быстрее и выполнять эффективнее сложные задания.

    AMD – это вид микропроцессоров для персональных компьютеров и ноутбуков, которые изготовляет и выпускает компания AMD.

    Технология таких микропроцессоров позволяет выполнять задания с высокой производительностью для 32-х разрядных систем.

    Встроенный в систему процессор не использует все свои ресурсы. Таким образом, продлевается срок его эксплуатации. Разгон необходимо осуществлять целенаправленно и нерегулярно.

    Иначе, можно нанести серьезный вред аппаратным компонентам ПК или ноутбука.

    Рассмотрим наиболее эффективные приложения, которые способны увеличить частоту работы процессора от компании AMD.

    Утилита Over Drive

    Мощное приложение для AMD 64. Программа бесплатная.

    Сразу же после первого запуска программы всплывает диалоговое окно, которое предупреждает пользователя о том, что он несет полную ответственность за все совершенные в программе действия, которые могут привести к поломке процессора.

    После соглашения с предоставленной информацией появится главное окно программы.

    Следуйте инструкции, чтобы разогнать микропроцессор системы:

    • Слева найдите пункт, который называется Clock Voltage;

    • Внимательно изучите появившееся окно. Первая колонка данных – это тактовая частота каждого доступного ядра микропроцессора. Вторая вкладка - порядковый множитель ядра, это число и нужно изменить;
    • Чтобы настроить множитель, необходимо нажать на кнопку Контроль скорости. Она выделена зеленым цветом на рисунке ниже. Затем отрегулируйте ползунки.

    Разгон с помощью функции Advanced Clock Calibration

    ACC – это функция для разгона AMD athlon. Особенность этого приложения заключается в том, что регулировка и подбор необходимых частот осуществляются очень точно.

    С приложением можно работать как в самой операционной система, так и в БИОСе .

    Чтобы отрегулировать работу центрального микропроцессора, перейдите во вкладку Performance Control в меню материнской плати.

    Клавиша находится в верхней части главной панели инструментов утилиты.

    Полезная информация:

    Для разгона процессора можно воспользоваться программой . Это это простая и понятная утилита для оверклокинга (разгона процессора). С её помощью даже новичок сможет немного разогнать свой ЦП.

    Программа ClockGen

    Главная цель утилиты – увеличить тактовою частоту работы микропроцессора через программу в режиме реального времени.

    Также с помощью удобного меню программы можно осуществить разгон других аппаратных компонентов: системных шин, памяти.

    Программа оснащена мощным генератором частот и несколькими средствами мониторинга системы, с помощью которых можно регулировать температуру компонентов и управлять работой системы охлаждения .

    Краткая инструкция по использованию:

    1. Чтобы разогнать процессор , запустите утилиту. На левой панели главного окна найдите пункт PLL Control и нажмите на него;
    2. В правой части окна появятся два ползунку. Понемногу изменяйте положение ползунка Selection. Помните! Делать это нужно понемногу и очень медленно.
      Резкое перетаскивание может спровоцировать слишком быстрый разгон и моментальный сбой процессора или других аппаратных компонентов компьютера;
    3. Нажмите на клавишу применения изменений.

    Таким же образом вы можете ускорять работу оперативной памяти и системных шин. Для этого выберите необходимый компонент в окне PLL Setup.

    Похожие статьи