• Какое устройство пк осуществляет процесс дискретизации звука. Тест по информатике на тему "устройство компьютера"

    17.03.2022

    Цель. Осмыслить процесс преобразования звуковой информации, усвоить понятия необходимые для подсчета объема звуковой информации. Научиться решать задачи по теме.

    Цель-мотивация. Подготовка к ЕГЭ.

    План урока

    1. Просмотр презентации по теме с комментариями учителя. Приложение 1

    Материал презентации: Кодирование звуковой информации.

    С начала 90-х годов персональные компьютеры получили возможность работать со звуковой информацией. Каждый компьютер, имеющий звуковую плату, микрофон и колонки, может записывать, сохранять и воспроизводить звуковую информацию.

    Процесс преобразования звуковых волн в двоичный код в памяти компьютера :

    Процесс воспроизведения звуковой информации, сохраненной в памяти ЭВМ :

    Звук представляет собой звуковую волну с непрерывно меняющейся амплитудой и частотой. Чем больше амплитуда, тем он громче для человека, чем больше частота сигнала, тем выше тон. Программное обеспечение компьютера в настоящее время позволяет непрерывный звуковой сигнал преобразовывать в последовательность электрических импульсов, которые можно представить в двоичной форме. В процессе кодирования непрерывного звукового сигнала производится его временная дискретизация . Непрерывная звуковая волна разбивается на отдельные маленькие временные участки, причем для каждого такого участка устанавливается определенная величина амплитуды.

    Таким образом, непрерывная зависимость амплитуды сигнала от времени A(t) заменяется на дискретную последовательность уровней громкости. На графике это выглядит как замена гладкой кривой на последовательность «ступенек».Каждой «ступеньке» присваивается значение уровня громкости звука, его код(1, 2, 3 и так

    далее). Уровни громкости звука можно рассматривать как набор возможных состояний, соответственно, чем большее количество уровней громкости будет выделено в процессе кодирования, тем большее количество информации будет нести значение каждого уровня и тем более качественным будет звучание.

    Аудиоадаптер (звуковая плата) - специальное устройство, подключаемое к компьютеру, предназначенное для преобразования электрических колебаний звуковой частоты в числовой двоичный код при вводе звука и для обратного преобразования (из числового кода в электрические колебания) при воспроизведении звука.

    В процессе записи звука аудиоадаптер с определенным периодом измеряет амплитуду электрического тока и заносит в регистр двоичный код полученной величины. Затем полученный код из регистра переписывается в оперативную память компьютера. Качество компьютерного звука определяется характеристиками аудиоадаптера:

    • Частотой дискретизации
    • Разрядностью(глубина звука).

    Частота временной дискретизации

    Это количество измерений входного сигнала за 1 секунду. Частота измеряется в герцах (Гц). Одно измерение за одну секунду соответствует частоте 1 Гц. 1000 измерений за 1 секунду – 1 килогерц (кГц). Характерные частоты дискретизации аудиоадаптеров:

    11 кГц, 22 кГц, 44,1 кГц и др.

    Разрядность регистра (глубина звука) число бит в регистре аудиоадаптера, задает количество возможных уровней звука.

    Разрядность определяет точность измерения входного сигнала. Чем больше разрядность, тем меньше погрешность каждого отдельного преобразования величины электрического сигнала в число и обратно. Если разрядность равна 8 (16) , то при измерении входного сигнала может быть получено 2 8 = 256 (2 16 =65536) различных значений. Очевидно, 16 разрядный аудиоадаптер точнее кодирует и воспроизводит звук, чем 8-разрядный. Современные звуковые карты обеспечивают 16-битную глубину кодирования звука. Количество различных уровней сигнала (состояний при данном кодировании) можно рассчитать по формуле:

    N = 2 I = 2 16 = 65536, где I - глубина звука.

    Таким образом, современные звуковые карты могут обеспечить кодирование 65536 уровней сигнала. Каждому значению амплитуды звукового сигнала присваивается 16-битный код. При двоичном кодировании непрерывного звукового сигнала он заменяется последовательностью дискретных уровней сигнала. Качество кодирования зависит от количества измерений уровня сигнала в единицу времени, то есть частоты дискретизации. Чем большее количество измерений производится за 1 секунду (чем больше частота дискретизации тем точнее процедура двоичного кодирования.

    Звуковой файл - файл, хранящий звуковую информацию в числовой двоичной форме.

    2. Повторяем единицы измерения информации

    1 байт = 8 бит

    1 Кбайт = 2 10 байт=1024 байт

    1 Мбайт = 2 10 Кбайт=1024 Кбайт

    1 Гбайт = 2 10 Мбайт=1024 Мбайт

    1 Тбайт = 2 10 Гбайт=1024 Гбайт

    1 Пбайт = 2 10 Тбайт=1024 Тбайт

    3. Закрепить изученный материал, просмотрев презентацию, учебник

    4. Решение задач

    Учебник , показ решения на презентации.

    Задача 1. Определить информационный объем стерео аудио файла длительностью звучания 1 секунда при высоком качестве звука(16 битов, 48 кГц).

    Задача (самостоятельно). Учебник , показ решения на презентации.
    Определить информационный объем цифрового аудио файла длительностью звучания которого составляет 10 секунда при частоте дискретизации 22,05 кГц и разрешении 8 битов.

    5. Закрепление. Решение задач дома, самостоятельно на следующем уроке

    Определить объем памяти для хранения цифрового аудио­файла, время звучания которого составляет две минуты при частоте дискретизации 44,1 кГц и разрешении 16 битов.

    В распоряжении пользователя имеется память объемом 2,6 Мб. Необходимо записать цифровой аудиофайл с длительностью звучания 1 минута. Какой должна быть частота дискретиза­ции и разрядность?

    Объем свободной памяти на диске - 5,25 Мб, разрядность звуковой платы - 16. Какова длительность звучания цифро­вого аудиофайла, записанного с частотой дискретизации 22,05 кГц?

    Одна минута записи цифрового аудиофайла занимает на дис­ке 1,3 Мб, разрядность звуковой платы - 8. С какой частотой дискретизации записан звук?

    Какой объем памяти требуется для хранения цифрового аудиофайла с записью звука высокого качества при условии, что время звучания составляет 3 минуты?

    Цифровой аудиофайл содержит запись звука низкого качест­ва (звук мрачный и приглушенный). Какова длительность звучания файла, если его объем составляет 650 Кб?

    Две минуты записи цифрового аудиофайла занимают на дис­ке 5,05 Мб. Частота дискретизации - 22 050 Гц. Какова раз­рядность аудиоадаптера?

    Объем свободной памяти на диске - 0,1 Гб, разрядность зву­ковой платы - 16. Какова длительность звучания цифрового аудиофайла, записанного с частотой дискретизации 44 100 Гц?

    Ответы

    № 92. 124,8 секунды.

    № 93. 22,05 кГц.

    № 94. Высокое качество звучания достигается при частоте дискретизации 44,1 кГц и разрядности аудиоадаптера, равной 16. Требуемый объем памяти - 15,1 Мб.

    № 95. Для мрачного и приглушенного звука характерны следующие параметры: частота дискретизации - 11 кГц, разрядность аудиоадаптера - 8. Длительность звучания равна 60,5 с.

    № 96. 16 битов.

    № 97. 20,3 минуты.

    Литература

    1. Учебник: Информатика, задачник-практикум 1 том, под редакцией И.Г.Семакина, Е.К. Хеннера)

    2. Фестиваль педагогических идей «Открытый урок»Звук. Двоичное кодирование звуковой информации. Супрягина Елена Александровна, учитель информатики.

    3. Н. Угринович. Информатика и информационные технологии. 10-11 классы. Москва. Бином. Лаборатория знаний 2003.

    1.Какое устройство компьютера моделирует мышление человека?
    -Процессор

    2.Действия над исходной информацией (фактами) в соответствии с некоторыми правилами - это
    -обработка информации

    3.Из предложенных сообщений выбрать правило
    -при умножении простых дробей их числители и знаменатели перемножаются

    4.Для кого, вероятнее всего, будет информативным следующее сообщение: «Программа - это алгоритм, записанный на языке программирования»?
    -начинающий программист

    5.Где хранится выполняемая в данный момент программа и обрабатываемые ею данные?
    -в оперативной памяти

    6.Какое устройство компьютера осуществляет процесс дискретизации звука?
    -звуковая карта

    7.Информативность сообщения, принимаемого человеком, определяется
    -наличием новых знаний и понятностью

    8.Вместо многоточий вставьте соответствующие понятия: «Каталог содержит информацию о..., хранящихся в...»
    A) файлах, внешней памяти

    9.Указать команду(ы), при выполнении которой(ых) выделенный фрагмент попадает в буфер обмена
    В) вырезать и копировать

    10.Какие из перечисленных действий относятся к форматированию текста?
    -установка режима выравнивания

    11.В прикладное программное обеспечение входят:
    В) текстовые редакторы

    12.Операционная система - это
    -комплекс программ, организующих управление работой компьютера и его взаимодействие с пользователем

    13.Предложены команды
    5Сделать диск А текущим.
    2Создать каталог TOWN
    3Создать каталог STREET
    1Создать файл Home.txt
    4Войти в созданный каталог
    Расположить пронумерованные команды так, чтобы был получен алгоритм, с помощью которого на пустой дискете создается файл с полным именем A:\TOWN\STREET\Home.txt
    Б) 5,2,3,1

    14.Для хранения текста требуется 84000 бита. Сколько страниц займет этот текст, если на странице размещается 30 строк по 70 символов в строке? Для кодирования текста используется таблица кодировки, состоящая из 256 символов.
    84000/(log(256)/log(2))/30/70 = 5

    15.Книга состоит из 64 страниц. На каждой странице 256 символов. Какой объем информации содержится в книге, если используется алфавит из 32 символов?
    А) 81920 байтов Б) 40 Кбайт В)10 Кбайт Г) 16 Кбайт Д) 64 Кбайт
    64*256*(log(32)/log(2)) /8/1024 = 10

    16.Сколько символов содержит сообщение, записанное с помощью 16-символьного алфавита, если его объем составил 1/16 часть Мегабайта?
    (1/16)*1024*1024*8/(log(16)/log(2)) = 131072

    17.Сколько памяти занимает графическое изображение, если его размер 40x60 и для кодирования цвета пикселя используется двоичный код из 32-х битов.
    А) 2400 байтов Б) 2100 байтов В) 960 байтов Г) 9600 байтов Д) 12000 байтов
    40*60*32/8 = 9600

    18.Текст занимает 0,25 Кбайт памяти. Сколько символов содержит этот текст, если используется таблица кодировки, состоящая из 256 символов?
    0.25*1024*8/(log(256)/log(2)) = 256

    19.Сколько битов информации содержится в сообщении объемом четверть Килобайта?
    1/4*1024*8 = 2048

    | Планирование уроков и материалы к урокам | 10 классы | Планирование уроков на учебный год | Представление текста, изображения и звука в компьютере (§ 6)

    Уроки 10 - 12
    Представление текста, изображения и звука в компьютере (§ 6)

    Звуковая информация

    Звуковая информация

    Принципы дискретизации звука («оцифровки» звука) отражены на рис. 1.11.

    Ввод звука в компьютер производится с помощью звукового устройства (микрофона, радио и др.), выход которого подключается к порту звуковой карты . Задача звуковой карты - с определенной частотой производить измерения уровня звукового сигнала (преобразованного в электрические колебания) и результаты измерения записывать в память компьютера. Этот процесс называют оцифровкой звука.

    Промежуток времени между двумя измерениями называется периодом измерений - τ с. Обратная величина называется частотой дискретизации - 1/τ (герц). Чем выше частота измерений, тем выше качество цифрового звука.

    Результаты таких измерений представляются целыми положительными числами с конечным количеством разрядов. Вы уже знаете, что в таком случае получается дискретное конечное множество значений в ограниченном диапазоне. Размер этого диапазона зависит от разрядности ячейки - регистра памяти звуковой карты. Снова работает формула 2 i , где i - разрядность регистра. Число i называют также разрядностью дискретизации. Записанные данные сохраняются в файлах специальных звуковых форматов.

    Существуют программы обработки звука - редакторы звука, позволяющие создавать различные музыкальные эффекты, очищать звук от шумов, согласовывать с изображениями для создания мультимедийных продуктов и т. д. С помощью специальных устройств, генерирующих звук, звуковые файлы могут преобразовываться в звуковые волны, воспринимаемые слухом человека.

    При хранении оцифрованного звука приходится решать проблему уменьшения объема звуковых файлов. Для этого кроме кодирования данных без потерь, позволяющего осуществлять стопроцентное восстановление данных из сжатого потока, используется кодирование данных с потерями. Цель такого кодирования - добиться схожести звучания восстановленного сигнала с оригиналом при максимальном сжатии данных. Это достигается путем использования различных алгоритмов, сжимающих оригинальный сигнал путем выкидывания из него слабослышимых элементов. Методов сжатия, а также программ, реализующих эти методы, существует много.

    Для сохранения звука без потерь используется универсальный звуковой формат файлов WAV. Наиболее известный формат «сжатого» звука (с потерями) - MP3. Он обеспечивает сжатие данных в 10 раз и более.


    Вопросы и задания

    1. Когда компьютеры начали работать с текстом, с графикой, со звуком?
    2. Что такое таблица кодировки? Какие существуют таблицы кодировки?
    3. На чем основывается дискретное представление изображения?
    4. Что такое модель цвета RGB?
    5. Напишите 8-разрядный код ярко-синего цвета, ярко-желтого (смесь красного с зеленым), бледно-желтого.
    6. Почему в полиграфии не используется модель RGB?
    7. Что такое CMYK?
    8. Какое устройство в компьютере производит оцифровку вводимого звукового сигнала?
    9. Как (качественно) качество цифрового звука зависит от частоты дискретизации и разрядности дискретизации?
    10. Чем удобен формат MP3?

    Следующая страница

    Звуковая система ПК в виде звуковой карты появилась в 1989 г., существенно расширив возможности ПК как технического сред­ства информатизации.

    Звуковая система ПК - комплекс программно-аппаратных средств, выполняющих следующие функции:

    запись звуковых сигналов, поступающих от внешних источни­ков, например, микрофона или магнитофона, путем преобразо­вания входных аналоговых звуковых сигналов в цифровые и по­следующего сохранения на жестком диске;

    воспроизведение записанных звуковых данных с помощью внешней акустической системы или головных телефонов (науш­ников);

    воспроизведение звуковых компакт-дисков;

    микширование (смешивание) при записи или воспроизведе­нии сигналов от нескольких источников;

    одновременная запись и воспроизведение звуковых сигналов (режим Full Duplex );

    обработка звуковых сигналов: редактирование, объединение или разделение фрагментов сигнала, фильтрация, изменение его уровня;

    обработка звукового сигнала в соответствии с алгоритмами объемного (трехмерного - 3 D - Sound ) звучания;

    генерирование с помощью синтезатора звучания музыкальных инструментов, а также человеческой речи и других звуков;

    управление работой внешних электронных музыкальных инст­рументов через специальный интерфейс MIDI.

    Звуковая система ПК конструктивно представляет собой зву­ковые карты, либо устанавливаемые в слот материнской пла­ты, либо интегрированные на материнскую плату или карту рас­ширения другой подсистемы ПК. Отдельные функциональные мо­дули звуковой системы могут выполняться в виде дочерних плат, устанавливаемых в соответствующие разъемы звуковой карты.

    Классическая звуковая система, как показано на рис. 5.1, со­держит:

    Модуль записи и воспроизведения звука;

      модуль синтезатора;

      модуль интерфейсов;

      модуль микшера;

      акустическую систему.

    Первые четыре модуля, как правило, устанавливаются на зву­ковой карте. Причем существуют звуковые карты без модуля син­тезатора или модуля записи/воспроизведения цифрового звука. Каждый из модулей может быть выполнен либо в виде отдельной микросхемы, либо входить в состав многофункциональной мик­росхемы. Таким образом, Chipset звуковой системы может содер­жать как несколько, так и одну микросхему.

    Конструктивные исполнения звуковой системы ПК претерпе­вают существенные изменения; встречаются материнские платы с установленным на них Chipset для обработки звука.

    Однако назначение и функции модулей современной звуковой системы (независимо от ее конструктивного исполнения) не ме­няются. При рассмотрении функциональных модулей звуковой карты принято пользоваться терминами «звуковая система ПК» или «звуковая карта».

    2. Модуль записи и воспроизведения

    Модуль записи и воспроизведения звуковой системы осуще­ствляет аналого-цифровое и цифроаналоговое преобразования в режиме программной передачи звуковых данных или передачи их по каналам DMA (Direct Memory Access - канал прямого доступа к памяти).

    Звук, как известно, представляет собой продольные волны, свободно распространяющиеся в воздухе или иной среде, поэтому звуковой сигнал непрерывно изменяется во времени и в про­странстве.

    Запись звука - это сохранение информации о колебаниях зву­кового давления в момент записи. В настоящее время для записи и передачи информации о звуке используются аналоговые и циф­ровые сигналы. Другими словами, звуковой сигнал может быть представлен в аналоговой или цифровой форме.

    Если при записи звука пользуются микрофоном, который пре­образует непрерывный во времени звуковой сигнал в непрерыв­ный во времени электрический сигнал, получают звуковой сиг­нал в аналоговой форме. Поскольку амплитуда звуковой волны определяет громкость звука, а ее частота - высоту звукового тона, постольку для сохранения достоверной информации о звуке на­пряжение электрического сигнала должно быть пропорционально звуковому давлению, а его частота должна соответствовать часто­те колебаний звукового давления.

    На вход звуковой карты ПК в большинстве случаев звуковой сигнал подается в аналоговой форме. В связи с тем что ПК опери­рует только цифровыми сигналами, аналоговый сигнал должен быть преобразован в цифровой. Вместе с тем акустическая систе­ма, установленная на выходе звуковой карты ПК, воспринимает только аналоговые электрические сигналы, поэтому после обра­ботки сигнала с помощью ПК необходимо обратное преобразова­ние цифрового сигнала в аналоговый.

    Аналого-цифровое преобразование представляет собой преобра­зование аналогового сигнала в цифровой и состоит из следующих основных этапов: дискретизации, квантования и кодирования. Схема аналого-цифрового преобразования звукового сигнала пред­ставлена на рис. 5.2.

    Предварительно аналоговый звуковой сигнал поступает на ана­логовый фильтр, который ограничивает полосу частот сигнала.

    Дискретизация сигнала заключается в выборке отсче­тов аналогового сигнала с заданной периодичностью и определя­ется частотой дискретизации. Причем частота дискретизации дол­жна быть не менее удвоенной частоты наивысшей гармоники (ча­стотной составляющей) исходного звукового сигнала. Поскольку человек способен слышать звуки в частотном диапазоне от 20 Гц до 20 кГц, максимальная частота дискретизации исходного зву­кового сигнала должна составлять не менее 40 кГц, т. е. отсчеты требуется проводить 40 000 раз в секунду. В связи с этим в боль­шинстве современных звуковых систем ПК максимальная частота дискретизации звукового сигнала составляет 44,1 или 48 кГц.

    Квантование по амплитуде представляет собой измерение мгновенных значений амплитуды дискретного по времени сигна­ла и преобразование его в дискретный по времени и амплитуде. На рис. 5.3 показан процесс квантования по уровню аналогового сигнала, причем мгновенные значения амплитуды кодируются 3-разрядными числами.

    Кодирование заключается в преобразовании в цифровой код квантованного сигнала. При этом точность измерения при кван­товании зависит от количества разрядов кодового слова. Если зна­чения амплитуды записать с помощью двоичных чисел и задать длину кодового словаN разрядов, число возможных значений ко­довых слов будет равно2 N . Столько же может быть и уровней квантования амплитуды отсчета. Например, если значение амплитуды отсчета представляется 16-разрядным кодовым словом, максималь­ное число градаций амплитуды (уровней квантования) составит 2 16 = 65 536. Для 8-разрядного представления соответственно полу­чим 2 8 =256 градаций амплитуды.

    Аналого-цифровое преобразование осуществляется специаль­ным электронным устройством - аналого-цифровым преобразова­ телем (АЦП), в котором дискретные отсчеты сигнала преобразу­ются в последовательность чисел. Полученный поток цифровых данных, т.е. сигнал, включает как полезные, так и нежелатель­ные высокочастотные помехи, для фильтрации которых получен­ные цифровые данные пропускаются через цифровой фильтр.

    Цифроаналоговое преобразование в общем случае происходит в два этапа, как показано на рис. 5.4. На первом этапе из потока цифровых данных с помощью цифроаналогового преобразователя (ЦАП) выделяют отсчеты сигнала, следующие с частотой диск­ретизации. На втором этапе из дискретных отсчетов путем сглажи­вания (интерполяции) формируется непрерывный аналоговый сиг­нал с помощью фильтра низкой частоты, который подавляет пе­риодические составляющие спектра дискретного сигнала.

    Для записи и хранения звукового сигнала в цифровой форме требуется большой объем дискового пространства. Например, сте­реофонический звуковой сигнал длительностью 60 с, оцифрован­ный с частотой дискретизации 44,1 кГц при 16-разрядном кван­товании для хранения требует на винчестере около 10 Мбайт.

    Для уменьшения объема цифровых данных, необходимых для представления звукового сигнала с заданным качеством, исполь­зуют компрессию (сжатие), заключающуюся в уменьшении (Количества отсчетов и уровней квантования или числа бит, при-I холящихся на один отсчет.

    Подобные методы кодирования звуковых данных с использо­ванием специальных кодирующих устройств позволяют сократить объем потока информации почти до 20 % первоначального. Выбор метода кодирования при записи аудиоинформации зависит от набора программ сжатия - кодеков (кодирование-декодиро­вание), поставляемых вместе с программным обеспечением зву­ковой карты или входящих в состав операционной системы.

    Выполняя функции аналого-цифрового и цифроаналогового преобразований сигнала, модуль записи и воспроизведения циф­рового звука содержит АЦП, ЦАП и блок управления, которые обычно интегрированы в одну микросхему, также называемую кодеком. Основными характеристиками этого модуля являют­ся: частота дискретизации; тип и разрядность АЦП и ЦАП; спо­соб кодирования аудиоданных; возможность работы в режиме Full Duplex .

    Частота дискретизации определяет максимальную час­тоту записываемого или воспроизводимого сигнала. Для записи и воспроизведения человеческой речи достаточно 6 - 8 кГц; му­зыки с невысоким качеством - 20 - 25 кГц; для обеспечения высококачественного звучания (аудиокомпакт-диска) частота дискретизации должна быть не менее 44 кГц. Практически все звуковые карты поддерживают запись и воспроизведение стерео­фонического звукового сигнала с частотой дискретизации 44,1 или 48 кГц.

    Разрядность АЦП и ЦАП определяет разрядность пред­ставления цифрового сигнала (8, 16 или 18 бит). Подавляющее большинство звуковых карт оснащено 16-разрядными АЦП и ЦАП. Такие звуковые карты теоретически можно отнести к классу Hi-Fi, которые должны обеспечивать студийное качество звуча­ния. Некоторые звуковые карты оснащаются 20- и даже 24-раз­рядными АЦП и ПАП, что существенно повышает качество запи­си/воспроизведения звука.

    Full Duplex (полный дуплекс) - режим передачи данных по каналу, в соответствии с которым звуковая система может одно­временно принимать (записывать) и передавать (воспроизводить) аудиоданные. Однако не все звуковые карты поддерживают этот режим в полном объеме, поскольку не обеспечивают высокое ка­чество звука при интенсивном обмене данными. Такие карты можно использовать для работы с голосовыми данными в Internet, на­пример, при проведении телеконференций, когда высокое каче­ство звука не требуется.

    Похожие статьи