• Методы измерения электрического сопротивления. Измерение сопротивлений - электротехнические измерения

    05.04.2021

    При изготовлении, монтаже и эксплуатации электротехниче­ских и радиотехнических устройств и установок необходимо изме­рять электрическое сопротивление.

    В практике для измерения сопротивлений применяют различ­ные методы в зависимости от характера объектов и условий измерения (например, твердые и жидкие проводники, заземлители, электроизоляция); от требований к точности и быстроте изме­рения; от величины измеряемых сопротивлений.

    Методы измерения малых сопротивлений существенно отлича­ются от методов измерения больших сопротивлений, так как в первом случае надо принимать меры для исключения влияния на ре­зультаты измерений сопротивления соединительных проводов, пе­реходных контактов.

    Измерительные механизмы омметров. Для прямого измере­ния сопротивлений применяют магнитоэлектрические измерительные механизмы одно- и двухрамочные.

    Однорамочный механизм можно ис­пользовать для измерения сопротивлений. С этой целью в прибор вводят добавочный резистор с постоянным сопротивлением

    и снабжают его источником питания (например, батареей сухих элементов). Измеряемое сопротивление включается с измери­телем последовательно (рис. 1) или параллельно.

    При последовательном соединении ток в измерителе , где

    - сопротивление измерителя; - на­пряжение источника питания.

    Учитывая, что

    , где - чувствительность прибора по току (постоянная величина), находим, что угол отклонения стрел­ки прибора при зависит только от величины измеряемо­го сопротивления :

    Если шкалу отградуировать по этому выражению в единицах сопротивления, то прибор будет омметром. Напряжение сухих эле­ментов со временем уменьшается, поэтому в измерения вносится ошибка, тем большая, чем больше действительное напряжение от­личается от того напряжения, при котором была градуирована шкала.


    Ошибка от непостоянства напряжения питающего источника не возникает, если измерительный механизм имеет две обмотки, расположенные на общей оси под некоторым углом друг к другу (рис. 2.).

    Рис. 1. Рис. 2.

    В двухрамочном измерительном механизме, который называют логометром, нет противодействующих пружин, вращающий и про­тиводействующий моменты создаются электромагнитными сила­ми. Поэтому при отсутствии тока в обмотках хорошо уравно­вешенная подвижная часть прибора находится в безразлич­ном равновесии (стрелка останавливается у любого деления шка­лы). Когда в катушках есть ток, на подвижную часть действуют два электромагнитных момента, направленные в противополож­ные стороны.

    Магнитная цепь измерительного механизма устроена так, что магнитная индукция вдоль воздушного зазора распределена неравномерно, но с таким расчетом, что при повороте подвижной части в любую сторону вращающий момент уменьшается, а проти­водействующий момент увеличивается (в зависимости от направ­ления поворота роль моментов меняется).

    Подвижная часть останавливается при

    или . Отсюда следует, что поло­жение стрелки на шкале зависит от отношения токов в обмотках, т.е. , но не зависит от напряжения питающего источника.

    На схеме рис. 2. видно, что измеряемое сопротивление

    входит в цепь одной из катушеклогометра, поэтому ток в ней, а так­же отклонение стрелки прибора однозначно зависит от значения .

    Используя эту зависимость, шкалу градуируют в единицах со­противления и тогда прибор является омметром. Омметры для из­мерения сопротивления изоляции снабжают источником питания с напряжением до 1000 В, чтобы измерение проводить при напря­жении, примерно равном рабочему напряжению установки. Таким источником может быть встроенный магнитоэлектрический генератор с ручным приводом или трансформатор с выпрямите­лем, включаемый в сеть переменного тока.

    Омметры, рассчитанные на измерения больших сопротивлений (больше 1 МОм), называют мегаомметрами.

    Косвенные методы измерения сопротивлений. Сопротивле­ние резистора или другого элемента электрической цепи можно определить по показаниям вольтметра и амперметра (при постоян­ном токе), применяя закон Ома:

    (схемы рис. 3, а, б). По схеме на рис. 4 определяют сопротивление по показаниям одного вольтметра. В положении 1 переключателя П вольтметр из­меряет напряжение сети , а в положении 2 - напряжение на за­жимах вольтметра . В последнем случае . Отсю­да

    Косвенные методы применяют для измерения средних сопротивле­ний, а одним вольтметром измеряют также большие сопротивле­ния. Точность этих методов значительно зависит от соотношения величин измеряемого сопротивления

    и внутренних сопротивле­ний амперметра и вольтметра . Результаты измерения можно считать удовлетворительными по точности, если выполняются условия: (см. схему рис. 3, а); (см. схему рис. 3, б); (см. схему рис. 4).

    Рис. 3 Рис. 4

    Методы и приборы сравнения. Для измерения малых и средних сопротивлений применяют метод сравнения измеряемого сопротивления

    с образцовым . Эти два сопротивления на схе­ме рис. 5 соединены последовательно, поэтому ток в них один и тот же. Величину его регулируют с помощью резистора , так, чтобы она не превышала допустимого тока для сопротивлений и . Отсюда . Неизвестные падения напряжения и измеряют вольтметром или потенциометром. Результаты измерения получаются более точными, если сопротив­ления и одного порядка, а сопротивление вольтметра доста­точно велико, так что присоединение его не влияет на режим основ­ной цепи.

    При измерении малых сопротивлений этим методом вольтметр подключают с помощью потенциальных зажимов, которые позволяют исключить сопротивления контактов основной цепи из результатов измерения.

    ИЗМЕРЕНИЕ СОПРОТИВЛЕНИЯ ПОСТОЯННОМУ ТОКУ

    Основными методами измерения сопротивления постоянному току являются: косвенный метод; метод непосредственной оценки и мостовой метод.
    Выбор метода измерений зависит от ожидаемого значения измеряемого сопротивления и требуемой точности.
    Наиболее универсальным из косвенных методов является метод амперметра-вольтметра.
    Метод амперметра-вольтметра. Основан на измерении тока, протекающего через измеряемое сопротивление и падения напряжения на нем. Применяют две схемы измерения: измерение больших сопротивлений (рис. 1.9,а) и измерение малых сопротивлений (рис. 1.9,б). По результатам измерения тока и напряжения определяют искомое сопротивление.
    Для схемы рис. 1.9,а искомое сопротивление и относительная методическая погрешность измерения определяются

    Где Rx - измеряемое сопротивление; Rа - сопротивление амперметра.
    Для схемы рис. 1.9,6 искомое сопротивление и относительная методическая погрешность измерения определяются

    где Rв -сопротивление вольтметра.
    Из определения относительных методических погрешностей следует, что измерение по схеме рис. 1.9,а обеспечивает меньшую погрешность при измерении больших сопротивлений, а измерение по схеме рис. 1.9,6 - при измерении малых сопротивлений.
    Погрешность измерения по данному методу рассчитывается по выражению

    где γ в, γ a , - классы точности вольтметра и амперметра;
    U п, I п пределы измерения вольтметра и амперметра.
    Используемые при измерении приборы должны иметь класс точности не более 0,2. Вольтметр подключают непосредственно к измеряемому сопротивлению. Ток при измерении должен быть таким, чтобы показания отсчитывались по второй половине шкалы. В соответствии с этим выбирается и шунт, применяемый для возможности измерения тока прибором класса 0,2. Во избежании нагрева сопротивления и, соответственно, снижения точности измерений, ток в схеме измерения не должен превышать 20% номинального.


    Рис. 1.9. Схема измерения больших (а) и малых (б) сопротивлений методом амперметра-вольтметра.
    Рекомендуется проводить 3 - 5 измерений при различных значениях тока. За результат, в данном случае, принимается среднее значение измеренных сопротивлений.
    При измерениях сопротивления в цепях, обладающих большой индуктивностью, вольтметр следует подключать после того как ток в цепи установится, а отключать до разрыва цепи тока. Это необходимо делать для того, чтобы исключить возможность повреждения вольтметра от ЭДС самоиндукции цепи измерения.

    измерение сопротивления проводников присоединения к земле и выравнивания потенциалов (металлосвязь) (2p);
    измерение сопротивления заземляющих устройств по трёхполюсной схеме (3p);
    измерение сопротивления заземляющих устройств по четырехполюсной схеме (4p);
    измерение сопротивления многократных заземляющих устройств без разрыва цепи заземлителей (с применением токоизмерительных клещей);
    измерение сопротивления заземляющих устройств методом двух клещей;
    измерение сопротивления молниезащит (громоотводов) по четырехполюсной схеме импульсным методом;
    измерение переменного тока (ток утечки);
    измерение удельного сопротивления грунта методом Веннера с возможностью выбора расстояния между измерительными электродами; высокая помехоустойчивость;

    Метод непосредственной оценки. Предполагает измерение сопротивления постоянному току с помощью омметра. Измерения омметром дают существенные неточности. По этой причине данный метод используют для приближенных предварительных измерений сопротивлений и для проверки цепей коммутации. На практике применяют омметры типа М57Д, М4125, Ф410 и др. Диапазон измеряемых сопротивлений данных приборов лежит в пределах от 0,1 Ом до 1000 кОм.
    Для измерения малых сопротивлений, например сопротивление паек якорных обмоток машин постоянного тока, применяют микроомметры типа М246. Это приборы логометрического типа с оптическим указателем, снабженные специальными самозачищающими щупами.
    Также для измерения малых сопротивлений, например переходных сопротивлений контактов выключателей, нашли применение контактомеры. Контактомеры Мосэнерго имеют пределы измерения 0 - 50000 мкОм с погрешностью менее 1,5%. Контактомеры КМС-68, КМС-63 позволяют производить измерения в пределах 500-2500 мкОм с погрешностью менее 5%.
    Для измерения сопротивления обмоток силовых трансформаторов, генераторов с достаточно большой точностью применяют потенциометры постоянного тока типа ПП-63, КП-59. Данные приборы используют принцип компенсационного измерения, т. е. падение напряжения на измеряемом сопротивлении уравновешивается известным падением напряжения.

    Мостовой метод. Применяют две схемы измерения - схема одинарного моста и схема двойного моста. Соответствующие схемы измерения представлены на рис. 1.10.
    Для измерения сопротивлений в диапазоне от 1 Ом до 1 МОм применяют одинарные мосты постоянного тока типа ММВ, Р333, МО-62 и др. Погрешность измерений данными мостами достигает 15% (мост ММВ). В одинарных мостах результат измерения учитывает сопротивление соединительных проводов между мостом и измеряемым сопротивлением. Поэтому сопротивления меньше 1 Ом такими мостами измерить нельзя из-за существенной погрешности. Исключение составляет мост P333, с помощью которого можно производить измерение больших сопротивлений по двухзажимной схеме и малых сопротивлений (до 5 10 Ом) по четырехзажимной схеме. В последней почти исключается влияние сопротивления соединительных проводов, т. к. два из них входят в цепь гальванометра, а два других - в цепь сопротивления плеч моста, имеющих сравнительно большие сопротивления.


    Рис. 1.10. Схемы измерительных мостов.
    а - одинарного моста; б - двойного моста.
    Плечи одинарных мостов выполняют из магазинов сопротивлений, а в ряде случаев (например, мост ММВ) плечи R2, R3 могут быть выполнены из калиброванной проволоки (реохорда), по которой перемещается движок, соединенный с гальванометром. Условие равновесия моста определяется выражением Rх = R3 (R1/R2). С помощью R1 устанавливают отношение R1/R2, обычно кратное 10, а с помощью R3 уравновешивают мост. В мостах с реохордом уравновешивания достигается плавным изменением отношения R3/R2 при фиксированных значениях R1.
    В двойных мостах сопротивления соединительных проводов при измерениях неучитываются, что представляет возможность измерять сопротивления до 10-6 Ом. На практике применяют одинарно-двойные мосты типа P329, P3009, МОД-61 и др. с диапазоном измерений от 10-8 Ом до 104 МОм с погрешностью измерения 0,01 - 2%.
    В этих мостах равновесие достигается изменением сопротивлений R1, R2, R3 и R4. При этом достигается равенства R1 = R3 и R2 = R4. Условие равновесия моста определяется выражением Rх= RN (R1/R2). Здесь сопротивление RN - образцовое сопротивление, составная часть моста. К измеряемому сопротивлению Rх подсоединяют четыре провода: провод 2 - продолжение цепи питания моста, его сопротивление не отражается на точности измерений; провода 3 и 4 включены последовательно с сопротивлениями R1 и R2 величиной больше 10 Ом, так что их влияние ограничено; провод 1 является составной частью моста и его следует выбирать как можно короче и толще.
    При измерениях сопротивления в цепях, обладающих большой индуктивностью, во избежание ошибок и для предотвращения повреждений гальванометра необходимо производить измерения при установившемся токе, а отключение - до разрыва цепи тока.
    Измерение сопротивления постоянному току независимо от метода измерения производят при установившемся тепловом режиме, при котором температура окружающей среды отличается от температуры измеряемого объекта не более чем на ±3°С. Для перевода измеренного сопротивления к другой температуре (например, с целью сравнения, к 15°С) применяют формулы пересчета.

    На методе амперметра-вольтметра основаны измерения приборами СОНЭЛ. Измерение больших сопротивлений - это измерители сопротивления электроизоляции серии MIC , малых сопротивлений - это микроомметры MMR-600, MMR-610 и др.. Измерители MMR оснащены источниками стабилизированого тока, аналогово-цифровыми преобразователями, токовыми и потенциальными разъемами подключения, переключателем направления тока для исключения погрешностей измерения в случаях с термо-ЭДС, управление от микроконтроллера, цифровая индикация результатов, связь с компьютером.
    Погрешность измерения - 0,25 % с разрешением от 0,1 мкОм (MMR-610).

    ВВЕДЕНИЕ

    Электрическое сопротивление постоянному току является основным параметром резисторов. Оно также служит важным показателем исправности и качества действия многих других элементов электрорадиоцепей - соединительных проводов, коммутирующих устройств, различного рода катушек и обмоток и т. д. Возможные значения сопротивлений, необходимость измерения которых возникает в радиотехнической практике, лежат в широких пределах - от тысячных долей ома и менее (сопротивления отрезков проводников, контактных переходов, экранировки, шунтов и т. п.) до тысяч мегом и более (сопротивления изоляции и утечки конденсаторов, поверхностное и объёмное сопротивления электроизоляционных материалов и т. п.). Наиболее часто приходится измерять сопротивления средних значений - примерно от 1 Ом до 1 МОм.

    В зависимости от пределов измеряемых сопротивлений измерители сопротивлений подразделяются на миллиомметры (с нижним пределом в десятые доли миллиом); омметры (с нижним пределом в единицы Ом); килоомметры (с верхним пределом около 1 МОм); мегаомметры (с верхним пределом до 1000 МОм); тераомметры (с верхним пределом больше 106 МОм).

    Целью данного курсового проекта является проектирование Омметра, измеряющего сопротивления на пределах 200 Ом и 2 Мом.

    МЕТОДЫ ИЗМЕРЕНИЯ СОПРОТИВЛЕНИЯ

    Методы непосредственной оценки

    Метод преобразования сопротивления в интервал времени

    Рис.1.

    Принцип работы:

    В исходном положении переключатель находится в положение «0», конденсатор заряжен до напряжения U0, выходной сигнал сравнивающего устройства(СУ) имеет нулевой уровень. Сигнал начала измерения (момент времени t1) переводит переключатель в положение «1», при этом напряжение на не инвертирующем входе СУ в первый момент времени превышает напряжение, действующее на инвертирующем входе, и выходной сигнал СУ принимает единичный уровень. В процессе разряда конденсатора напряжение на не инвертирующем входе непрерывно падает и в момент времени, когда оно окажется ниже,(t2) выходной сигнал СУ возвращается к исходному нулевому уровню.

    В результате на выходе СУ появится сигнал с длительностью, прямо пропорциональной величине измеряемого сопротивления.

    Уравнение преобразования:

    Преимущества:

    Выходной величиной является время- удобная для квантования величина;

    Достаточно высокая точность;

    Широкий диапазон измерения;

    Не требуются высокоомные образцовые резисторы;

    Недостатки:

    Может быть использован только для измерений практически безреактивных сопротивлений;

    Невозможность измерения сопротивлений, зависящих от напряжения (непроволочных резисторов, диэлектриков);

    Громоздкость.

    Методы преобразования сопротивления в ток

    Рис.3.Структурная схема преобразования сопротивления в ток

    Принцип работы:

    Схема содержит источник образцового напряжения, в цепь которого включено измеряемое сопротивление. Напряжение, приложенное к измеряемому сопротивлению, вызывает в цепи ток Ix, обратно пропорциональный измеряемому сопротивлению.

    Уравнение преобразования:

    Преимущества:

    Простота;

    Высокая точность дальнейшего измерения тока;

    Не требуется образцовый высокоомный резистор

    Недостатки:

    Обратная зависимость тока в цепи от измеряемого сопротивления.

    Рис.3.

    Принцип работы:

    Источник высокого напряжения создает в цепи ток: в цепи с добавочным сопротивлением R0 ток I0, а в цепи с измеряемым сопротивлением Rx- Ix; Отношение этих токов пропорционально измеряемому сопротивлению.

    Уравнение преобразования:

    Преимущества:

    Простота;

    Недостатки:

    Нелинейная шкала;

    Потребность в генераторе высокого напряжения;

    Ограниченная точность.

    Методы преобразования сопротивления в напряжение

    а) с использованием идеального генератора тока

    Рис.4.Структурная схема преобразования сопротивления в напряжение

    Принцип работы:

    Схема содержит источник образцового тока с очень большим входным сопротивлением, в цепь которого включается измеряемое сопротивление. Напряжение на резисторе прямопропорционально измеряемому сопротивлению.

    Уравнение преобразования:

    Недостатки:

    Потребность в источнике тока с очень большим выходным током;

    Потребность в усилителе с очень большим сопротивлением при последующем преобразовании напряжения.

    Преимущества:

    Большая чувствительность;

    Простота.

    б) с использованием реального источника тока

    Рис.5.

    Принцип работы:

    Ток I0 создается источником напряжения U0 и равен U0 /R0, при входном сопротивлении усилителя много большем измеряемого он практически весь протекает через Rх, а напряжение на выходе усилителя будет пропорционально измеряемому сопротивлению.

    Уравнение преобразования:

    Недостатки:

    Потребность усилителя с очень большим входным сопротивлением;

    Низкая чувствительность;

    Преимущества:

    Прямая зависимость выходного напряжения от измеряемого сопротивления;

    Простота.

    в) метод делителя(напряжение снимается с Rх)

    Рис.6.

    Принцип работы:

    На вход делителя, образованного измеряемым сопротивлением Rх и образцовым сопротивлением R0 >> Rх, подается стабилизированное постоянное напряжение U0; с резистора Rх снимается напряжение пропорциональное измеряемому сопротивлению.

    Уравнение преобразования:

    Преимущества:

    Простота

    Недостатки:

    Потребность в высокоомном сопротивлении большей величины чем измеряемое;

    Потребность в усилителе с очень большим входным сопротивлением при дальнейшем преобразовании напряжения.

    г) метод делителя (напряжение снимается с R0)

    Рис.7.

    Принцип работы:

    Аналогичен (в), с тем различием, что напряжение, пропорциональное измеряемому сопротивлению, снимается с образцового сопротивления R0 << Rх.

    Уравнение преобразования:

    Преимущества:

    Нет потребности в высокоомном образцовом сопротивлении;

    Простота

    Недостатки:

    Малая точность дальнейшего измерения напряжения;

    Обратная зависимость напряжения от измеряемого сопротивления

    Методы сравнения

    Мостовой метод

    Принцип работы:

    Путем изменения соотношения R1/R2 и сопротивления R3 добиваются равновесия, определяемого отсутствием тока в цепи нуль-индикатора. При этом результат измерения определяют по значениям R1/R2 и сопротивления R3.

    сопротивление напряжение усилитель погрешность

    Рис.8.Структурная схема

    Условие равновесия:

    Преимущества:

    Большая точность;

    Высокая чувствительность;

    Недостатки:

    Потребность в высокоомных образцовых мерах;

    Измерение сопротивления прямым и косвенным методами.

    Подготовка приборов к измерению сопротивления

    1.1. В7-26

    Переключатель рода работ перевести в положение «r » и проверить нулевое положение указателя при замкнутых накоротко гнездах «r » и «*» (рис.1). Затем разомкнуть гнезда и установить указатель (стрелку) в положение «∞» на шкале ручкой «Устан. “∞”» (для ).

    Переключатель рода работ выставить в положение «». Выбрать шкалу прибора. Рис. 1

    3. Измерение сопротивлений прямым методом.

    2.1 На магазине сопротивлений установить:

    (Ом), (кОм).

    2.2. Подключить R X к В7-26 (рис.2) и измерить его величину. Конечное значение шкалы R k = Ом (10 n – множитель шкалы). Записать R изм , R k , K П .

    2.3. Подключить R X к Щ4313 (рис.3) и измерить его величину.Записать значения R изм , R k , коэффициентов a и b Рис.2

    (см. паспорт прибора), вычислить класс точности K П прибора.

    Для мультиметра Щ4313 класс точности определяется по формуле: ,

    Рис. 3

    2.4. С учетом инструментальной погрешности результат измерений прибором В7-26

    записать в виде:

    ,

    где R изм – измеренное значение, R K – конечное значение шкалы прибора.

    2.5. Результат измерений прибором Щ4313 записать в виде:

    2.6. На магазине сопротивлений установить R 2 = (кОм) и выполнить пункты 2.1. - 2.5.

    3. Измерение сопротивлений R 1 и R 2 косвенным методом.

    3.1. Собрать схему (рис. 4). Установить на источнике питания Е = (В).

    , I K – конечное значение шкалы. R V = 30 МОм. Записать результаты измерений тока и напряжения.

    ,

    Рис. 4 .

    Записать результат измерения сопротивлений R 1 (R 2 ) с учётом инструментальной погрешности косвенных измерений:

    Методическая погрешность измерений:
    , . Поправка П = - R A .

    Окончательный результат измерений:

    3.2 Собрать схему (рис. 5). Записать результаты измерений тока и напряжения:

    ; .

    Записать результат измерения с учётом инструментальной погрешности

    косвенных измерений:

    Рис. 5

    Методическая погрешность измерений:

    ; .

    Поправка на методическую погрешность:

    .

    Случайная погрешность поправки П :

    Результат измерений:

    .

    Недавно понадобилось оценить сопротивление изоляции электрического кабеля. Но так как ни мегомметра, ни тем более высоковольтной «пробойной» установки под руками не было, то пришлось «изобретать» то, чем можно измерить сопротивления, близкие к единицам и десяткам ГОм. В итоге оказалось, что всё достаточно просто – на сборку схемы и проверку изоляции ушло не более часа, а потом ещё несколько дней на то, чтобы экспериментальный макет самодельного мегомметра доработать для удобства пользования и оформить в корпус.

    Сначала немного исходной теории.

    Для электронного измерения больших сопротивлений довольно часто применяется схема, содержащая в себе источник постоянного напряжения и резисторный делитель из неизвестного и известного сопротивлений, к выходу которого подключен усилитель постоянного тока (рис.1 ) .

    Если считать, что усилитель не оказывает никакого влияния на делитель, то напряжение «Uвх» будет находиться в зависимости от отношения сопротивлений резисторов и соответствовать формуле R1/(Rx+R1). В полученный результат называется коэффициентом преобразования «S», но радиолюбителям более привычно понятие коэффициента деления «N», который равен 1/S.

    Для понимания физического смысла формул представим, что сопротивления резисторов равны и тогда сразу ясно, что напряжения на резисторах распределятся в одинаковых пропорциях и «Uвх» будет равно половине «Uист». Проверим это, взяв номиналы сопротивлений в 9100 Ом и подставив их в формулу:

    S = 9100/(9100+9100) = 0,5;
    N = 1/0,5 = 2.

    Да, всё верно – получился коэффициент деления 2.

    Теперь немного усложним – возьмём резистор Rx равный 9000 Ом, а R1 1000 Ом:

    S = 1000/(9000+1000) = 0,1;
    N = 1/0,1 = 10.

    Получается коэффициент деления 10.

    Если же взять резисторы 10 кОм и 1 кОм (или, допустим, 9,1 кОм и 910 Ом), то получится делитель напряжения в 11 раз. Это достаточно удобно – взяв номиналы резисторов кратные целому числу «х», получим коэффициент деления равный х+1 и по формулам можно не считать.

    Теперь нужно оценить, в каких границах может находиться измеряемое сопротивление Rx. По схеме, указанной на рисунке 1 , понятно, что напряжение, подаваемое на вход усилителя не должно превышать его напряжения питания, т.е. значение минимального измеряемого сопротивления Rx зависит от потенциала «Uист» и номинала R1.

    Возьмём теоретический вариант, когда значение R1 равно 1 кОм, а «Uист» равно одному из напряжений питания усилителя – допустим, что это +15 В. Тогда понятно, что максимальное «Uвых» получается при Rx=0. Минимальное же, т.е. такое, которое будет регистрироваться вольтметром (допустим, что это 1 мВ), получится при коэффициенте деления N=15000 (это результат деления 15 В на 1 мВ) и, соответственно, при Rx=14998,999 кОм (или 14,999 МОм).

    Чтобы измерять ещё бОльшие сопротивления, нужно увеличивать R1 – например, при его значении в 10 МОм, верхний порог измерений приближается к 150 ГОм. Это, конечно, цифра теоретическая, так как не всегда удаётся выполнить входные цепи усилителя так, чтобы они не оказывали шунтирующего влияния на R1. Но здесь можно пойти по другому пути – поставить R1 сопротивлением 1…3 МОм и увеличить напряжение «Uист» в несколько раз. Правда, в этом варианте появляется ограничение по минимальному измеряемому сопротивлению, так как появляется возможность превышения разрешённого уровня «Uвх», но это тоже решаемо (будет показано ниже).

    Итак, если взять источник с напряжением 40 В и поставить R1=2,2 МОм, то учитывая минимальную чувствительность шкалы измерителя в 1 мВ, получается, что максимально возможное измеряемое сопротивление будет находиться где-то в районе 90-100 ГОм, чего в принципе, достаточно для большинства радиолюбительских задач. Нижний порог измерений, при котором на вход усилителя будет поступать 12 В, будет около 5 МОм.

    Теперь, зная основные условия, можно переходить к практическому конструированию.

    Один из вариантов схемы показан на рисунке 2 . На диодах VD1…VD4 и конденсаторах С3С4 собран двуполярный выпрямитель, а на С5, С6, С8, С9, С12, С13 и микросхемах VR1 и VR2 – стабилизаторы напряжений +/- 15 В для питания операционных усилителей. Их в измерительной части схемы установлено два. Первый (OP1) – это неинвертирующий буферный повторитель с коэффициентом усиления 1, имеющий в таком включении входное сопротивление более 1 ТОм и этим минимально влияя на известное сопротивление резистора R7 измерительного делителя. Элементы R10 и С10 являются фильтром НЧ и ослабляют помехи, наводимые на проводники в высокоомной цепи. Резистор R13 служит для балансировки дифференциального каскада OP1 и, в конечном итоге, обеспечивает установку нулевого напряжения на выходе всей схемы при отсутствии «Uвх».

    Так как измеритель предполагалось использоваться со стрелочным магнитоэлектрическим прибором, то для удобства пользования в схему был добавлен ещё один каскад на OP2 с возможностью выбора коэффициента усиления в 1 или в 101 раз. В таком варианте при разомкнутых контактах S2 возможно проводить более-менее достоверный контроль Rx в пределах от 1 МОм до 1 ГОм (при этом «Uвых» ОР2 меняется примерно от 10 В до 0,1 В). А при замкнутых контактах S2 можно оценивать сопротивления от 1 ГОм до 100 ГОм (естественно, при тех же границах изменения «Uвых»).

    Минимальное требуемое «Uвых» ОР2 зависит от применяемого стрелочного прибора. Если, допустим, у него чувствительность 100 мкА и он имеет 100 делений на шкале, то тогда стрелка отклонится на отметку «100» при напряжении на выходе ОР2 равном 10 В при сопротивлении R11 равном 100 кОм (10 В / 100 кОм = 100 мкА). А так как минимальное показание в одно деление шкалы будет при «Uвых» равном 0,1 В, то исходя из этого и выбирается коэффициент усиления каскада на ОР2.

    Источник стабилизированного напряжения +43 В питается от обмотки трансформатора Tr1. Переменное напряжением 44-45 В выпрямляется диодным мостом VD5…VD8, пульсации сглаживаются конденсатором С1 (конструктивно их там два – по 220 мкФ на 100 В). Стабилизация выходного напряжения +43 В обеспечивается цепочкой последовательно установленных стабилитронов VD9 и VD10. Резистор R3 – токоограничительный, рассчитан на протекающий ток около 3,8…4 мА.

    В выходной цепи источника установлен резистор 5,1 МОм. Сделано это для того, чтобы ограничить «Uвх» до безопасного уровня при случайном замыкании измерительных выводов или при измерении малых сопротивлений. Этим, конечно, ограничивается точность измерения в, так сказать, «низкоомном диапазоне», но защищает микросхему ОР1 от выхода из строя. Также следует учитывать, что из-за установки этого резистора сильно изменяется линейность измерения в «нижнем» участке шкалы «1 МОм … 1 ГОм» и поэтому перед градуировкой шкал следует проводить калибровочную оценку.

    Цепи R1C2 и R8C11 - дополнительные ФНЧ и при Rx равном 1 ГОм подавление частоты 50 Гц составляет более 60 dB (рис.3 ) (расчет теоретический и относится к помехам, появляющимся на левом выводе Rx, файл для программы находится в приложении к тексту).

    Диоды VD11 и VD12 – защищают прибор РА1 от больших напряжений во время подстройки сопротивления резистора R11 или в случае его выхода из строя.

    Конструктивно вся электронная схема, за исключением сетевого выключателя S1, предохранителя FU1, резистора R11 и диодов VD11 и VD12, выполнена на одной печатной плате размером 70х75 мм (файл для в приложении, вид со стороны печати, поэтому рисунок при надо «зеркалить»). Резистор и диоды крепятся непосредственно к лепесткам прибора РА1, а выключатель и предохранительная колодка – на задней стенке корпуса.

    Все применённые детали – обыкновенные, «выводные».

    После проверки и настройки (рис.4 ), трансформатор, плата и вся коммутация были установлены в корпус от переговорного устройства УДП (рис.5 ).

    Настройку схемы лучше проводить поэтапно, начиная со стабилизаторов +/- 15 В. После установки всех деталей на печатную плату и проверки правильности монтажа, нужно отпаять перемычки, по которым подаются напряжения питания к ОР1 и ОР2 (красно-оранжевые на рис.6 ).

    После этого на вход выпрямительного моста следует подать напряжение с 15-ти вольтовых обмоток трансформатора Tr1 и проверить выходное напряжение на конденсаторах С12 и С13. Хорошо бы также проверить напряжение пульсаций 100 Гц на входах VR1 и VR2 – оно должно быть менее 0,2 В.

    Затем так же подать на плату напряжение ~44 В, проверить работу стабилизатора +43 В и при необходимости подобрать напряжение стабилизации (42-44 В).

    После этого можно восстановить перемычки и проверить работоспособность операционных усилителей ОР1 и ОР2. При отсутствии резистора Rx и при замкнутых контактах переключателя S2 на выходе ОР2 должно быть напряжение, близкое к нулю и должно меняться при вращении движка переменного резистора R12.

    Теперь следует проверить правильность работы измерительного делителя и электронной схемы. Для этого следует к выводам R9 и C11 подключить цифровой вольтметр, разомкнуть контакты S2, а к измерительному разъёму «Rx» подключит два резистора по 5,1 МОм, включенных последовательно (суммарное сопротивление – 10,2 МОм). При включении прибора, вольтметр должен показать напряжение, близкое к 5,2…5,21 В.

    Проверку работоспособности при измерении больших сопротивлений и калибровку шкал индикатора можно провести, имитируя падение напряжения на резисторе Rx, т.е. подавая напряжение «Uвх» с регулируемого источника напряжения или с низкоомного регулируемого делителя (рис.7 ), подключенного к шине питания +15 В. Вариант «а» – при использовании цифрового вольтметра с точность показаний до 1 мВ, вариант «б» - при более грубом вольтметре, но с делением выходного напряжения ещё в 10 раз, что позволит получить нужную точность.

    Расчет выставляемых напряжений можно провести по вышеприведённым формулам или воспользоваться программой и посчитать в ней.

    При поиске комплектующих и замене деталей на другие, следует учитывать, что на входе операционного усилителя ОР1 должны стоять полевые транзисторы и он должен иметь выводы для коррекции нуля (возможная замена – на К544УД2 или К140УД8, но у последнего нумерация выводов другая).

    Конденсатор С10 должен быть с высоким сопротивлением изоляции и низким током утечки (кстати, можно этим же измерителем проверять утечку конденсаторов, подключив их к разъёму «Rx»).

    Остальные детали не критичны – главное, чтобы по размерам подошли. Выпрямительные диоды – любые на ток от 1 А и выше, стабилизаторы напряжений можно поставить слаботочные (78L15 и 79L15). Электролитические конденсаторы должны быть рассчитаны на работу с соответствующими напряжениями, номинал их можно уменьшить в 2-3 раза (но при этом желательно оценить уровень пульсаций напряжения). Конденсаторы С12 и С13 составлены из двух по 1000 мкФ на 16 В. Неполярные конденсаторы С2, С5, С6, С8, С9 и С11 – широкораспространённые К73 или их импортные аналоги.

    Диоды VD11 и VD12 лучше поставить германиевые, но подойдут и КД521, КД503, 1N4148 и любые из серии 1N400х.

    Переключатели S1 и S2 – микротумблеры МТ1, предохранитель – стеклянный от 0,25 А до 1 А в установочной колодке ДПБ.

    На рисунке 5 в правой части корпуса виден галетный переключатель, не указанный в электрической схеме. Это результат продолжающихся экспериментов с изменением уровня источника стабилизированного напряжения. Сейчас в него добавлены 2 стабилитрона и сделаны отводы для дискретного выбора «Uист» (рис.8 ).

    Ещё одной полезной доработкой была бы переделка усилителя на ОР2 из линейного в логарифмический – тогда можно обойтись без переключателя S2 и, соответственно, одной шкалой на приборе РА2, но пока сделать этого не получилось.

    Литература.
    1. Электрические измерения. Под редакцией А.В. Фремке, Е.М. Душин, изд. «Энергия», Ленинград, 1980 г.
    2. Электрические измерения. Под редакцией Е.Г. Шрамкова, изд. «Высшая школа», Москва, 1972 г.

    Андрей Гольцов, г. Искитим

    Список радиоэлементов

    Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
    OP1, OP2 Операционный усилитель К544УД1А 2 В блокнот
    VR1 Линейный регулятор

    LM7815

    1 В блокнот
    VR2 Линейный регулятор

    LM7915

    1 В блокнот
    VD1-VD4 Выпрямительный диод

    1N4004

    4 В блокнот
    VD4-VD8 Выпрямительный диод

    1N4005

    4 В блокнот
    VD9, VD10 Стабилитрон

    КС522А

    2 В блокнот
    VD11, VD Диод

    КД522А

    2 В блокнот
    HL1 Светодиод

    АЛ307А

    1 В блокнот
    R1 Резистор

    47 кОм

    1 МЛТ-0,125 В блокнот
    R2, R10 Резистор

    10 кОм

    2 МЛТ-0,125 В блокнот
    R3 Резистор

    3.9 кОм

    1 МЛТ-0,5 В блокнот
    R4 Резистор

    750 Ом

    1 МЛТ-0,125 В блокнот
    R5 Резистор

    5.1 МОм

    1 МЛТ-1 В блокнот
    R6 Резистор

    75 кОм

    1 МЛТ-0,125 В блокнот
    R7 Резистор

    2.0 МОм

    1 МЛТ-0,5 В блокнот
    R8 Резистор
    Похожие статьи