• Измерение коэффициента нелинейных искажений. Нелинейные искажения звукового тракта

    13.11.2020

    Коэффицие́нт нелине́йных искаже́ний (КНИ или K Н ) - величина для количественной оценки нелинейных искажений .

    Определение [ | ]

    Коэффициент нелинейных искажений равен отношению среднеквадратичной суммы спектральных компонент выходного сигнала , отсутствующих в спектре входного сигнала, к среднеквадратичной сумме всех спектральных компонент входного сигнала

    K H = U 2 2 + U 3 2 + U 4 2 + … + U n 2 + … U 1 2 + U 2 2 + U 3 2 + … + U n 2 + … {\displaystyle K_{\mathrm {H} }={\frac {\sqrt {U_{2}^{2}+U_{3}^{2}+U_{4}^{2}+\ldots +U_{n}^{2}+\ldots }}{\sqrt {U_{1}^{2}+U_{2}^{2}+U_{3}^{2}+\ldots +U_{n}^{2}+\ldots }}}}

    КНИ - безразмерная величина и выражается обычно в процентах. Кроме КНИ, уровень нелинейных искажений часто выражают и через коэффициент гармонических искажений (КГИ или K Г ) - величину, выражающую степень нелинейных искажений устройства (усилителя и др.) и равную отношению среднеквадратичного напряжения суммы высших гармоник сигнала, кроме первой, к напряжению первой гармоники при воздействии на вход устройства синусоидального сигнала.

    K Γ = U 2 2 + U 3 2 + U 4 2 + … + U n 2 + … U 1 {\displaystyle K_{\Gamma }={\frac {\sqrt {U_{2}^{2}+U_{3}^{2}+U_{4}^{2}+\ldots +U_{n}^{2}+\ldots }}{U_{1}}}}

    КГИ, так же, как и КНИ, выражается в процентах и связан с ним соотношением

    K Γ = K H 1 − K H 2 {\displaystyle K_{\Gamma }={\frac {K_{\mathrm {H} }}{\sqrt {1-K_{\mathrm {H} }^{2}}}}}

    Очевидно, что для малых значений КГИ и КНИ совпадают в первом приближении. Интересно, что в западной литературе обычно пользуются КГИ, тогда как в отечественной литературе традиционно предпочитают КНИ.

    Важно также отметить, что КНИ и КГИ - это лишь количественные меры искажений , но не качественные. Например, значение КНИ (КГИ), равное 3% ничего не говорит о характере искажений, т.е. о том, как в спектре сигнала распределены гармоники, и каков, например, вклад НЧ или ВЧ составляющих. Так, в спектрах ламповых УМЗЧ обычно преобладают низшие гармоники, что часто воспринимается на слух как «тёплый ламповый звук», а в транзисторных УМЗЧ искажения более равномерно распределены по спектру, и он более плоский, что часто воспринимается как «типичный транзисторный звук» (хотя спор этот во многом зависит от личных ощущений и привычек человека).

    Примеры расчёта КГИ [ | ]

    Для многих стандартных сигналов КГИ может быть подсчитан аналитически. Так, для симметричного прямоугольного сигнала (меандра)

    K Γ = π 2 8 − 1 ≈ 0.483 = 48.3 % {\displaystyle K_{\Gamma }\,=\,{\sqrt {{\frac {\,\pi ^{2}}{8}}-1\,}}\approx \,0.483\,=\,48.3\%}

    Идеальный пилообразный сигнал имеет КГИ

    K Γ = π 2 6 − 1 ≈ 0.803 = 80.3 % {\displaystyle K_{\Gamma }\,=\,{\sqrt {{\frac {\,\pi ^{2}}{6}}-1\,}}\approx \,0.803\,=\,80.3\%}

    а симметричный треугольный

    K Γ = π 4 96 − 1 ≈ 0.121 = 12.1 % {\displaystyle K_{\Gamma }\,=\,{\sqrt {{\frac {\,\pi ^{4}}{96}}-1\,}}\approx \,0.121\,=\,12.1\%}

    Несимметричный прямоугольный импульсный сигнал с соотношением длительности импульса к периоду, равному μ обладает КГИ

    K Γ (μ) = μ (1 − μ) π 2 2 sin 2 ⁡ π μ − 1 , 0 < μ < 1 {\displaystyle K_{\Gamma }\,(\mu)={\sqrt {{\frac {\mu (1-\mu)\pi ^{2}\,}{2\sin ^{2}\pi \mu }}-1\;}}\,\qquad 0<\mu <1} ,

    который достигает минимума (≈0.483) при μ =0.5, т.е. тогда, когда сигнал становится симметричным меандром. Кстати, фильтрованием можно добиться значительного снижения КГИ этих сигналов, и таким образом получать сигналы, близкие по форме к синусоидальным. Например, симметричный прямоугольный сигнал (меандр) с изначальным КГИ в 48.3%, после прохождения через фильтр Баттерворта второго порядка (с частотой среза, равной частоте основной гармоники) имеет КГИ уже в 5.3%, а если фильтр четвёртого порядка - то КГИ=0.6%. Следует отметить, что чем более сложный сигнал на входе фильтра и чем более сложный сам фильтр (а точнее, его передаточная функция), тем более громоздкими и трудоёмкими будут вычисления КГИ. Так, стандартный пилообразный сигнал, прошедший через фильтр Баттерворта первого порядка, имеет КГИ уже не 80.3% а 37.0%, который в точности даётся следующим выражением

    K Γ = π 2 3 − π c t h π ≈ 0.370 = 37.0 % {\displaystyle K_{\Gamma }\,=\,{\sqrt {{\frac {\,\pi ^{2}}{3}}-\pi \,\mathrm {cth} \,\pi \,}}\,\approx \,0.370\,=\,37.0\%}

    А КГИ того же сигнала, прошедшего через такой же фильтр, но второго порядка, уже будет даваться достаточно громоздкой формулой

    K Γ = π c t g π 2 ⋅ c t h 2 π 2 − c t g 2 π 2 ⋅ c t h π 2 − c t g π 2 − c t h π 2 2 (c t g 2 π 2 + c t h 2 π 2) + π 2 3 − 1 ≈ 0.181 = 18.1 % {\displaystyle K_{\Gamma }\,={\sqrt {\pi \,{\frac {\,\mathrm {ctg} \,{\dfrac {\pi }{\sqrt {2\,}}}\cdot \,\mathrm {cth} ^{2\!}{\dfrac {\pi }{\sqrt {2\,}}}-\,\mathrm {ctg} ^{2\!}{\dfrac {\pi }{\sqrt {2\,}}}\cdot \,\mathrm {cth} \,{\dfrac {\pi }{\sqrt {2\,}}}-\,\mathrm {ctg} \,{\dfrac {\pi }{\sqrt {2\,}}}-\,\mathrm {cth} \,{\dfrac {\pi }{\sqrt {2\,}}}\;}{{\sqrt {2\,}}\left(\mathrm {ctg} ^{2\!}{\dfrac {\pi }{\sqrt {2\,}}}+\,\mathrm {cth} ^{2\!}{\dfrac {\pi }{\sqrt {2\,}}}\!\right)}}\,+\,{\frac {\,\pi ^{2}}{3}}\,-\,1\;}}\;\approx \;0.181\,=\,18.1\%}

    Если же рассматривать вышеупомянутый несимметричный прямоугольный импульсный сигнал, прошедший через фильтр Баттерворта p -го порядка, то тогда

    K Γ (μ , p) = csc ⁡ π μ ⋅ μ (1 − μ) π 2 − sin 2 π μ − π 2 ∑ s = 1 2 p c t g π z s z s 2 ∏ l = 1 l ≠ s 2 p 1 z s − z l + π 2 R e ∑ s = 1 2 p e i π z s (2 μ − 1) z s 2 sin ⁡ π z s ∏ l = 1 l ≠ s 2 p 1 z s − z l {\displaystyle K_{\Gamma }\,(\mu ,p)=\csc \pi \mu \,\cdot \!{\sqrt {\mu (1-\mu)\pi ^{2}-\,\sin ^{2}\!\pi \mu \,-\,{\frac {\,\pi }{2}}\sum _{s=1}^{2p}{\frac {\,\mathrm {ctg} \,\pi z_{s}}{z_{s}^{2}}}\prod \limits _{\scriptstyle l=1 \atop \scriptstyle l\neq s}^{2p}\!{\frac {1}{\,z_{s}-z_{l}\,}}\,+\,{\frac {\,\pi }{2}}\,\mathrm {Re} \sum _{s=1}^{2p}{\frac {e^{i\pi z_{s}(2\mu -1)}}{z_{s}^{2}\sin \pi z_{s}}}\prod \limits _{\scriptstyle l=1 \atop \scriptstyle l\neq s}^{2p}\!{\frac {1}{\,z_{s}-z_{l}\,}}\,}}}

    где 0<μ <1 и

    z l ≡ exp ⁡ i π (2 l − 1) 2 p , l = 1 , 2 , … , 2 p {\displaystyle z_{l}\equiv \exp {\frac {i\pi (2l-1)}{2p}}\,\qquad l=1,2,\ldots ,2p}

    подробности вычислений - см. Ярослав Благушин и Эрик Моро .

    Измерения [ | ]

    • В низкочастотном (НЧ) диапазоне для измерения КНИ применяются измерители нелинейных искажений (измерители коэффициента гармоник).
    • На более высоких частотах (СЧ, ВЧ) используют косвенные измерения с помощью анализаторов спектра или селективных вольтметров .

    Для проведения этого анализа необходимо следующее:

    1. Изменить входной источник сигнала AC Voltage на Pulse Voltage и установить в нем параметры приведенные на рисунке.

    2. В самом анализе следует установить следующее:


    Рис. 11

    Проанализировав полученный график оценим искажение импульса:

    1) Выброс фронта?ф~1 В, это не превышает 4% от U ном и является неплохим показателем качества данного усилителя.

    2) Скорость нарастания выходного напряжения?U~ 2 В/мкс и время нарастания

    t Ф ~ 10 мксек, что в совокупности составляет неплохой показатель качества нарастания выходного сигнала в данном усилителе.

    3) Так же усилитель имеет неплохие характеристики заднего фронта импульса, которые схожи с характеристиками переднего фронта.

    Коэффициент гармоник

    Нелинейные искажения вызваны прохождением сигнала через элементы, имеющие нелинейные характеристики, например, через транзисторы, вследствие чего искажается форма колебания и меняется его спектральный состав. Поскольку усилитель вносит нелинейные искажения, то на его выходе появляются новые компоненты (гармоники), отсутствующие на входе, что вызывает искажение тембра звука. Количественной оценкой нелинейных искажений является коэффициент гармоник Кг:

    где Р г -- суммарная мощность гармоник; P 1 -- мощность полезного сигнала.

    Из всех гармоник наиболее интенсивны вторая и третья. Остальные имеют гораздо меньшую мощность и мало влияют на форму выходного сигнала.

    Коэффициент гармоник многокаскадного усилителя обычно близок к сумме коэффициентов гармоник отдельных каскадов. Поэтому если нелинейные искажения в предварительных каскадах соизмеримы с искажениями в оконечном каскаде, то общий коэффициент гармоник тракта звуковоспроизведения можно оценить по формуле:

    Однако коэффициент К г дает неполное представление о нелинейных искажениях в усилителе, так как он не учитывает сигналы комбинационных частот, образующиеся в результате интерференции между отдельными составляющими сложного колебании. Наиболее заметны нелинейные искажения из-за комбинационных частот, возникающие при подаче на усилитель двух и большего числа синусоидальных сигналов. Особенно заметны комбинационные частоты вида f1--f2, f1--2f2, 2f1--f2, так как они, как правило, не содержатся в спектре даже сложного входного сигнала.

    Для высококачественных усилителей часто вводят еще один показатель, характеризующий их нелинейность, -- коэффициент интермодуляционных искажений Ким.и. При измерении Kим.и на вход усилителя подают два гармонических колебания с частотами: f1 = 50... 100 Гц и f 2 = 5... 10 кГц при отношении амплитуд Uвх(f1)/Uвх(f2)=4/1- Коэффициент Ким.и равен отношению амплитуды выходного напряжения разностной частоты f 2 --f 1 к амплитуде выходного напряжения частоты f 1:

    Рис. 12.

    Допустимое значение Ким.и<0,1 ... 1%.

    Нелинейные искажения значительно зависят от амплитуды подаваемого на вход сигнала. На рис. 12 показан характер зависимости коэффициента Кт от мощности на выходе усилителя. Эта кривая является основной характеристикой для оценки нелинейных искажении. Она служит также для определения максимальной полезной мощности усилителя по заданному Кг.

    Коэффициент гармоник задается, как правило, для большого уровня входного сигнала. Для транзисторных усилителей мощности характерно увеличение нелинейных искажений при весьма малых уровнях входного сигнала, что вызвано искажениями типа "ступенька" или "центральная отсечка". Поэтому для полной оценки качества усилителя целесообразно контролировать К г также при малых уровнях входных сигналов.

    В основном нелинейные искажения возникают в оконечном и предоконечном каскадах. Для оконечных усилителей вносимые нелинейные искажения различны на разных частотах. В области граничных частот полосы пропускания они возрастают (при неизменной амплитуде входного сигнала). Это объясняется реактивным характером сопротивления нагрузки оконечных транзисторов и связанным с этим изменением формы динамической характеристики на крайних частотах полосы пропускания.

    Допустимые нелинейные искажения зависят от назначения усилителя. Так, в усилителях ЗЧ, используемых в радиовещании и бытовой звуковоспроизводящей аппаратуре, коэффициент гармоник по ГОСТ 11157--74 должен составлять 1 ... 2%. В высококачественной профессиональной аппаратуре К г <0,05%.

    В последние годы резко улучшились параметры высококлассной звуковоспроизводящей аппаратуры. Особенно заметна тенденция к снижению нелинейных искажений. Появились усилители ЗЧ, у которых коэффициент Кг<0,0005%. Достижение чрезвычайно малых нелинейных искажений связано с применением большого количества транзисторов с высоким коэффициентом усиления и установлением глубокой ООС. Последнее обстоятельство приводит к ухудшению динамических (скоростных) характеристик, заключающемуся в том, что резкий скачок напряжения на выходе запаздывает по отношению к вызывающему его скачку на входе. Это приводит к "жесткому", "транзисторному" звучанию, исчезает мягкость, бархатистость звука при субъективном восприятии музыкальной программы.

    Проблема заметности коэффициента гармоник в диапазоне 1 ... 0,0005% не имеет однозначного толкования. Можно лишь утверждать, что если получены малые нелинейные искажения, и они достигнуты не за счет ухудшения других параметров усилителя, то это говорит о совершенстве усилительного тракта.

    Однако следует отметить, что испытание усилителей со сверхмалыми нелинейными искажениями предъявляет весьма высокие требования к нелинейным искажениям источника испытательных сигналов. Лучшие отечественные звуковые генераторы типа ГЗ-102 обеспечивают К г не менее 0,05%, т. е. имеют тот же порядок, что в нелинейные искажения, вносимые самим усилителем. Разрешающая способность измерителей нелинейных искажений С6-5 также составляет от 0,02 до 0,03%. Поэтому точные измерения сверхмалых нелинейных искажении весьма затруднительны.

    Для испытаний сверхлинейных усилителей следует пользоваться прецизионными звуковыми генераторами и анализаторами спектра. Хорошие результаты при оценке сверхмалых нелинейных искажений дает метод компенсации.

    Входного сигнала, к среднеквадратичной сумме всех спектральных компонент входного сигнала

    texvc не найден; См. math/README - справку по настройке.): K_\mathrm{H} = \frac{ \sqrt{U_2^2 + U_3^2 + U_4^2 + \ldots + U_n^2+ \ldots } }{ \sqrt{U_1^2+U_2^2 + U_3^2 + \ldots + U_n^2+ \ldots }}

    КНИ - безразмерная величина и выражается обычно в процентах. Кроме КНИ, уровень нелинейных искажений часто выражают и через коэффициент гармонических искажений (КГИ или K Г ) - величину, выражающую степень нелинейных искажений устройства (усилителя и др.) и равную отношению среднеквадратичного напряжения суммы высших гармоник сигнала, кроме первой, к напряжению первой гармоники при воздействии на вход устройства синусоидального сигнала.

    Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): K_{\Gamma} = \frac{ \sqrt{U_2^2 + U_3^2 + U_4^2 + \ldots + U_n^2+ \ldots } }{U_1}

    КГИ, так же, как и КНИ, выражается в процентах и связан с ним соотношением

    Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): K_{\Gamma} = \frac{K_\mathrm{H}}{\sqrt{1 - K^2_\mathrm{H}}}

    Очевидно, что для малых значений КГИ и КНИ совпадают в первом приближении. Интересно, что в западной литературе обычно пользуются КГИ, тогда как в отечественной литературе традиционно предпочитают КНИ.

    Важно также отметить, что КНИ и КГИ - это лишь количественные меры искажений , но не качественные. Например, значение КНИ (КГИ), равное 3% ничего не говорит о характере искажений, т.е. о том, как в спектре сигнала распределены гармоники, и каков, например, вклад НЧ или ВЧ составляющих. Так, в спектрах ламповых УМЗЧ обычно преобладают низшие гармоники, что часто воспринимается на слух как «тёплый ламповый звук», а в транзисторных УМЗЧ искажения более равномерно распределены по спектру, и он более плоский, что часто воспринимается как «типичный транзисторный звук» (хотя спор этот во многом зависит от личных ощущений и привычек человека).

    Примеры расчёта КГИ

    Для многих стандартных сигналов КГИ может быть подсчитан аналитически. Так, для симметричного прямоугольного сигнала (меандра)

    Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): K_{\Gamma} \,= \,\sqrt{\frac{\,\pi^2}{8}-1\,}\approx \, 0.483\,=\,48.3\%

    Идеальный пилообразный сигнал имеет КГИ

    Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): K_{\Gamma} \,= \,\sqrt{\frac{\,\pi^2}{6}-1\,}\approx \, 0.803\,=\,80.3\%

    а симметричный треугольный

    Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): K_{\Gamma} \,= \,\sqrt{\frac{\,\pi^4}{96}-1\,}\approx\,0.121\,= \, 12.1\%

    Несимметричный прямоугольный импульсный сигнал с соотношением длительности импульса к периоду, равному μ обладает КГИ

    Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): K_{\Gamma}\,(\mu)=\sqrt{\frac{\mu(1-\mu)\pi^2\,}{2\sin^2\pi\mu}-1\;}\,\qquad 0<\mu<1 ,

    который достигает минимума (≈0.483) при μ =0.5, т.е. тогда, когда сигнал становится симметричным меандром. Кстати, фильтрованием можно добиться значительного снижения КГИ этих сигналов, и таким образом получать сигналы, близкие по форме к синусоидальным. Например, симметричный прямоугольный сигнал (меандр) с изначальным КГИ в 48.3%, после прохождения через фильтр Баттерворта второго порядка (с частотой среза, равной частоте основной гармоники) имеет КГИ уже в 5.3%, а если фильтр четвёртого порядка - то КГИ=0.6%. Следует отметить, что чем более сложный сигнал на входе фильтра и чем более сложный сам фильтр (а точнее, его передаточная функция), тем более громоздкими и трудоёмкими будут вычисления КГИ. Так, стандартный пилообразный сигнал, прошедший через фильтр Баттерворта первого порядка, имеет КГИ уже не 80.3% а 37.0%, который в точности даётся следующим выражением

    Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): K_{\Gamma} \,= \, \sqrt{\frac{\,\pi^2}{3} - \pi\,\mathrm{cth}\,\pi\,}\,\approx\,0.370\,= \, 37.0\%

    А КГИ того же сигнала, прошедшего через такой же фильтр, но второго порядка, уже будет даваться достаточно громоздкой формулой

    Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): K_{\Gamma}\,= \sqrt{\pi\,\frac{\,\mathrm{ctg}\,\dfrac{\pi}{\sqrt{2\,}}\cdot\,\mathrm{cth}^{2\!}\dfrac{\pi}{\sqrt{2\,}} -\,\mathrm{ctg}^{2\!}\dfrac{\pi}{\sqrt{2\,}}\cdot\,\mathrm{cth}\,\dfrac{\pi}{\sqrt{2\,}} -\,\mathrm{ctg}\,\dfrac{\pi}{\sqrt{2\,}} - \,\mathrm{cth}\,\dfrac{\pi}{\sqrt{2\,}}\;} {\sqrt{2\,}\left(\mathrm{ctg}^{2\!}\dfrac{\pi}{\sqrt{2\,}} +\,\mathrm{cth}^{2\!}\dfrac{\pi}{\sqrt{2\,}}\!\right)} \,+\,\frac{\,\pi^2}{3} \,-\, 1\;} \;\approx\;0.181\,= \, 18.1\%

    Если же рассматривать вышеупомянутый несимметричный прямоугольный импульсный сигнал, прошедший через фильтр Баттерворта p -ого порядка, то тогда

    Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): K_{\Gamma}\,(\mu, p)= \csc\pi\mu\,\cdot \!\sqrt{\mu(1-\mu)\pi^2-\,\sin^2\!\pi\mu\, -\,\frac{\,\pi}{2}\sum_{s=1}^{2p} \frac{\,\mathrm{ctg}\,\pi z_s}{z_s^2} \prod\limits_{\scriptstyle l=1\atop\scriptstyle l\neq s}^{2p}\!\frac{1}{\,z_s-z_l\,}\, +\,\frac{\,\pi}{2}\,\mathrm{Re}\sum_{s=1}^{2p} \frac{e^{i\pi z_s(2\mu-1)}}{z_s^2\sin \pi z_s} \prod\limits_{\scriptstyle l=1\atop\scriptstyle l\neq s}^{2p}\!\frac{1}{\,z_s-z_l\,}\,}

    где 0<μ <1 и

    Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): z_l\equiv \exp{\frac{i\pi(2l-1)}{2p}}\, \qquad l=1, 2,\ldots, 2p

    подробности вычислений - см. Ярослав Благушин и Эрик Моро .

    Измерения

    • В низкочастотном (НЧ) диапазоне для измерения КНИ применяются измерители нелинейных искажений (измерители коэффициента гармоник).
    • На более высоких частотах (СЧ, ВЧ) используют косвенные измерения с помощью анализаторов спектра или селективных вольтметров .

    Типовые значения КНИ и КГИ

    Ниже приведены некоторые типовые значения для КНИ, и в скобках, для КГИ.

    См. также

    Напишите отзыв о статье "Коэффициент нелинейных искажений"

    Литература, ссылки, примечания

    • Справочник по радиоэлектронным устройствам : В 2-ух томах; Под ред. Д. П. Линде - М.: Энергия,
    • Горохов П. К. Толковый словарь по радиоэлектронике. Основные термины - М: Рус. яз.,

    Дополнительные ссылки

    Отрывок, характеризующий Коэффициент нелинейных искажений

    Я застыла в настоящем шоке. Почему-то такой невероятный факт никак не хотел укладываться в моей ошарашенной голове...
    – Бабушка?.. – только и смогла произнести я.
    Стелла кивнула, очень довольная произведённым эффектом.
    – Как же так? Поэтому она и помогла тебе их найти? Она знала?!.. – тысячи вопросов одновременно бешено крутились в моём взбудораженном мозгу, и мне казалось, что я никак не успею всего меня интересующего спросить. Я хотела знать ВСЁ! И в то же время прекрасно понимала, что «всего» мне никто не собирается говорить...
    – Я наверное потому его и выбрала, что чувствовала что-то. – Задумчиво сказала Стелла. – А может это бабушка навела? Но она никогда не признается, – махнула рукой девчушка.
    – А ОН?.. Он тоже знает? – только и смогла спросить я.
    – Ну, конечно же! – рассмеялась Стелла. – А почему тебя это так удивляет?
    – Просто она уже старенькая... Ему это должно быть тяжело, – не зная, как бы поточнее объяснить свои чувства и мысли, сказала я.
    – О, нет! – опять засмеялась Стелла. – Он был рад! Очень-очень рад. Бабушка дала ему шанс! Никто бы не смог ему в этом помочь – а она смогла! И он увидел её опять... Ой, это было так здорово!
    И тут только наконец-то я поняла, о чём она говорит... Видимо, бабушка Стеллы дала своему бывшему «рыцарю» тот шанс, о котором он так безнадёжно мечтал всю свою длинную, оставшуюся после физической смерти, жизнь. Ведь он так долго и упорно их искал, так безумно хотел найти, чтобы всего лишь один только раз мог сказать: как ужасно жалеет, что когда-то ушёл... что не смог защитить... что не смог показать, как сильно и беззаветно их любил... Ему было до смерти нужно, чтобы они постарались его понять и смогли бы как-то его простить, иначе ни в одном из миров ему незачем было жить...
    И вот она, его милая и единственная жена, явилась ему такой, какой он помнил её всегда, и подарила ему чудесный шанс – подарила прощение, а тем же самым, подарила и жизнь...
    Тут только я по-настоящему поняла, что имела в виду Стеллина бабушка, когда она говорила мне, как важен подаренный мною «ушедшим» такой шанс... Потому что, наверное, ничего страшнее на свете нет, чем остаться с не прощённой виной нанесённой обиды и боли тем, без кого не имела бы смысла вся наша прошедшая жизнь...
    Я вдруг почувствовала себя очень усталой, как будто это интереснейшее, проведённое со Стеллой время отняло у меня последние капельки моих оставшихся сил... Я совершенно забыла, что это «интересное», как и всё интересное раньше, имело свою «цену», и поэтому, опять же, как и раньше, за сегодняшние «хождения», тоже приходилось платить... Просто все эти «просматривания» чужих жизней являлись огромной нагрузкой для моего бедного, ещё не привыкшего к этому, физического тела и, к моему великому сожалению, меня пока что хватало очень ненадолго...
    – Ты не волнуйся, я тебя научу, как это делать! – как бы прочитав мои грустные мысли, весело сказала Стелла.
    – Делать, что? – не поняла я.
    – Ну, чтобы ты могла побыть со мной дольше. – Удивившись моему вопросу, ответила малышка. – Ты живая, поэтому тебе и сложно. А я тебя научу. Хочешь погулять, где живут «другие»? А Гарольд нас здесь подождёт. – Лукаво сморщив маленький носик, спросила девочка.
    – Прямо сейчас? – очень неуверенно спросила я.
    Она кивнула... и мы неожиданно куда-то «провалились», «просочившись» через мерцающую всеми цветами радуги «звёздную пыль», и оказались уже в другом, совершенно не похожем на предыдущий, «прозрачном» мире...
    * * *

    Ой, ангелы!!! Смотри, мамочка, Ангелы! – неожиданно пропищал рядом чей-то тоненький голосок.
    Я ещё не могла очухаться от необычного «полёта», а Стелла уже мило щебетала что-то маленькой кругленькой девчушке.
    – А если вы не ангелы, то почему вы так сверкаете?.. – искренне удивившись, спросила малышка, и тут же опять восторженно запищала: – Ой, ма-а-амочки! Какой же он красивый!..
    Тут только мы заметили, что вместе с нами «провалилось» и последнее «произведение» Стеллы – её забавнейший красный «дракончик»...

    Светлана в 10 лет

    – Это... что-о это? – аж с придыхом спросила малышка. – А можно с ним поиграть?.. Он не обидится?
    Мама видимо мысленно её строго одёрнула, потому что девочка вдруг очень расстроилась. На тёплые коричневые глазки навернулись слёзы и было видно, что ещё чуть-чуть – и они польются рекой.
    – Только не надо плакать! – быстро попросила Стелла. – Хочешь, я тебе сделаю такого же?
    У девочки мгновенно засветилась мордашка. Она схватила мать за руку и счастливо заверещала:
    – Ты слышишь, мамочка, я ничего плохого не сделала и они на меня совсем не сердятся! А можно мне иметь такого тоже?.. Я, правда, буду очень хорошей! Я тебе очень-очень обещаю!
    Мама смотрела на неё грустными глазами, стараясь решить, как бы правильнее ответить. А девочка неожиданно спросила:
    – А вы не видели моего папу, добрые светящиеся девочки? Он с моим братиком куда-то исчез...
    Стелла вопросительно на меня посмотрела. И я уже заранее знала, что она сейчас предложит...
    – А хотите, мы их поищем? – как я и думала, спросила она.
    – Мы уже искали, мы здесь давно. Но их нет. – Очень спокойно ответила женщина.
    – А мы по-другому поищем, – улыбнулась Стелла. – Просто подумайте о них, чтобы мы смогли их увидеть, и мы их найдём.
    Девочка смешно зажмурилась, видимо, очень стараясь мысленно создать картинку своего папы. Прошло несколько секунд...
    – Мамочка, а как же так – я его не помню?.. – удивилась малышка.
    Такое я слышала впервые и по удивлению в больших Стеллиных глазах поняла, что для неё это тоже что-то совершенно новенькое...
    – Как так – не помнишь? – не поняла мать.
    – Ну, вот смотрю, смотрю и не помню... Как же так, я же его очень люблю? Может, и правда его больше нет?..
    – Простите, а вы можете его увидеть? – осторожно спросила у матери я.
    Женщина уверенно кивнула, но вдруг что-то в её лице изменилось и было видно, что она очень растерялась.
    – Нет... Я не могу его вспомнить... Неужели такое возможно? – уже почти испуганно сказала она.
    – А вашего сына? Вы можете вспомнить? Или братика? Ты можешь вспомнить своего братика? – обращаясь сразу к обеим, спросила Стелла.
    Мама и дочь отрицательно покачали головами.
    Обычно такое жизнерадостное, личико Стеллы выглядело очень озабоченным, наверное, никак не могла понять, что же такое здесь происходит. Я буквально чувствовала напряжённую работу её живого и такого необычного мозга.

    Основным параметром электронного усилителя является коэффициент усиления К. Коэффициент усиления мощности (напряжения, тока) определяется отношением мощности (напряжения, тока) выходного сигнала к мощности (напряжению, току) входного и характеризует усилительные свойства схемы. Выходной и входной сигналы должны быть выражены в одних и тех же количественных единицах, поэтому коэффициент усиления является безразмерной величиной.

    В отсутствие реактивных элементов в схеме, а также при определенных режимах ее работы, когда исключается их влияние, коэффициент усиления является действительной величиной, не зависящей от частоты. В этом случае выходной сигнал повторяет форму входного и отличается от него в К раз только амплитудой. В дальнейшем изложении материала речь пойдет о модуле коэффициента усиления, если нет особых оговорок.

    В зависимости от требований, предъявляемых к выходным параметрам усилителя переменного сигнала, различают коэффициенты усиления:

    а) по напряжению, определяемый как отношение амплитуды переменной составляющей выходного напряжения к амплитуде переменной составляющей входного, т. е.

    б) по току, который определяется отношением амплитуды переменной составляющей выходного тока к амплитуде переменной составляющей входного:

    в) по мощности

    Так как , то коэффициент усиления по мощности можно определить следующим образом:

    При наличии реактивных элементов в схеме (конденсаторов, индуктивностей) коэффициент усиления следует рассматривать как комплексную величину

    где m и n - действительная и мнимая составляющие, зависящие от частоты входного сигнала:

    Положим, что коэффициент усиления К не зависит от амплитуды входного сигнала. В этом случае при подаче на вход усилителя синусоидального сигнала выходной сигнал также будет иметь синусоидальную форму, но отличаться от входного по амплитуде в К раз и по фазе на угол .

    Периодический сигнал сложной формы согласно теореме Фурье можно представить суммой конечного или бесконечно большого числа гармонических составляющих, имеющих разные амплитуды, частоты и фазы. Так как К - комплексная величина, то амплитуды и фазы гармонических составляющих входного сигнала при прохождении через усилитель изменяются по-разному и выходной сигнал будет отличаться по форме от входного.

    Искажения сигнала при прохождении через усилитель, обусловленные зависимостью параметров усилителя от частоты и не зависящие от амплитуды входного сигнала, называются линейными искажениями. В свою очередь, линейные искажения можно разделить на частотные (характеризующие изменение модуля коэффициента усиления К в полосе частот за счет влияния реактивных элементов в схеме); фазовые (характеризующие зависимость сдвига по фазе между выходным и входным сигналами от частоты за счет влияния реактивных элементов).

    Частотные искажения сигнала можно оценить с помощью амплитудно-частотной характеристики, выражающей зависимость модуля коэффициента усиления по напряжению от частоты. Амплитудно-частотная характеристика усилителя в общем виде представлена на рис. 1.2. Рабочий диапазон частот усилителя, внутри которого коэффициент усиления можно считать с известной степенью точности постоянным, лежит между низшей и высшей граничными частотами и называется полосой пропускания. Граничные частоты определяют уменьшение коэффициента усиления на заданную величину от своего максимального значения на средней частоте .

    Введя коэффициент частотных искажений на данной частоте ,

    где - коэффициент усиления по напряжению на данной частоте, можно с помощью амплитудно-частотной характеристики определить частотные искажения в любом диапазоне рабочих частот усилителя.

    Поскольку наибольшие частотные искажения имеем на границах рабочего диапазона, то при расчете усилителя, как правило, задают коэффициенты частотных искажений на низшей и высшей граничных частотах, т. е.

    где - соответственно коэффициенты усиления по напряжению на высшей и низшей граничных частотах.

    Обычно принимают , т. е. на граничных частотах коэффициент усиления по напряжению уменьшается до уровня 0,707 значения коэффициента усиления на средней частоте. При таких условиях полоса пропускания усилителей звуковой частоты, предназначенных для воспроизведения речи и музыки, лежит в пределах 30-20 000 Гц. Для усилителей, применяемых в телефонии, допустима более узкая полоса пропускания 300-3400 Гц. Для усиления импульсных сигналов необходимо использовать так называемые широкополосные усилители, полоса пропускания которых располагается в диапазоне частот от десятков или единиц герц до десятков или даже сотен мегагерц.

    Для оценки качества усилителя часто пользуются параметром

    Для широкополосных усилителей , поэтому

    Противоположностью широкополосных усилителей являются избирательные усилители, назначение которых состоит в усилении сигналов в узкой полосе частот (рис. 1.3).

    Усилители, предназначенные для усиления сигналов со сколь угодно малой частотой, называются усилителями постоянного тока. Из определения ясно, что низшая граничная частота полосы пропускания такого усилителя равна нулю. Амплитудно-частотная характеристика усилителя постоянного тока дана на рис. 1.4.

    Фазочастотная характеристика показывает, как меняется угол сдвига фаз между выходным и входным сигналами при изменении частоты и определяет фазовые искажения.

    Фазовые искажения отсутствуют при линейном характере фазочастотной характеристики (пунктирная линия на рис. 1.5), так как в этом случае каждая гармоническая составляющая входного сигнала при прохождении через усилитель сдвигается по времени на один и тот же интервал . Угол сдвига фаз между входным и выходным сигналами при этом пропорционален частоте

    где - коэффициент пропорциональности, определяющий угол наклона характеристики к оси абсцисс.

    Фазочастотная характеристика реального усилителя представлена на рис. 1.5 сплошной линией. Из рис. 1.5 видно, что в пределах полосы пропускания усилителя фазовые искажения минимальны, однако резко возрастают в области граничных частот.

    Если коэффициент усиления зависит от амплитуды входного сигнала, то имеют место нелинейные искажения усиливаемого сигнала, обусловленные наличием в усилителе элементов с нелинейными вольт-амперными характеристиками.

    Задавая закон изменения можно проектировать нелинейные усилители с определенными свойствами. Пусть коэффициент усиления определяется зависимостью , где - коэффициент пропорциональности.

    Тогда при подаче на вход усилителя синусоидального входного сигнала выходной сигнал усилителя

    где - амплитуда и частота входного сигнала.

    Первая гармоническая составляющая в выражении (1.6) представляет собой полезный сигнал, остальные являются результатом нелинейных искажений.

    Нелинейные искажения можно оценить с помощью так называемого коэффициента гармоник

    где - амплитудные значения соответственно мощности, напряжения и тока гармонических составляющих.

    Индекс определяет номер гармоники. Обычно учитывают только вторую и третью гармоники, так как амплитудные значения мощностей более высоких гармоник сравнительно малы.

    Линейные и нелинейные искажения характеризуют точность воспроизведения формы входного сигнала усилителем.

    Амплитудная характеристика четырехполюсников, состоящих только из линейных элементов, при любом значении теоретически является наклонной прямой. Практически же максимальное значение ограничивается электрической прочностью элементов четырехполюсника. Амплитудная характеристика усилителя, выполненного на электронных приборах (рис. 1.6), в принципе нелинейна, однако может содержать участки ОА, где кривая носит приблизительно линейный характер с большой степенью точности. Рабочий диапазон входного сигнала не должен выходить за пределы линейного участка (ОА) амплитудной характеристики усилителя, иначе нелинейные искажения превысят допустимый уровень.

    Коэффициент нелинейных искажений (КНИ) или Total Harmonic Distorsions (THD) – показатель, характеризующий степень отличия формы сигнала от синусоидальной, так же можно сказать это – величина для количественной оценки нелинейных искажений периодического сигнала.

    Русский термин «коэффициент искажения» эквивалентен зарубежному термину «искаженный коэффициент мощности» . Его можно выразить также через THD как показано ниже:

    2) Коэффициент нелинейных искажений (КНИ) – величина для количественной оценки нелинейных искажений, равная отношению среднеквадратичной суммы всех высших спектральных компонентов сигнала, к среднеквадратичной сумме спектральных компонентов всего сигнала (кроме постоянной составляющей), иногда используется нестандартизованный синоним – клирфактор (заимств. с нем.). КНИ – безразмерная величина, выражается обычно в процентах.

    Коэффициент гармоник (КГ) так же как и КНИ выражается в процентах. Коэффициент гармоник (KГ) связан с КНИ (KН ) соотношением:

    Важное замечание:
    Следует признать, что данная терминология долгое время являлась «правильной» для русскоязычной, немецкоязычной литературы, так же именно эти определения продолжают использоваться в некоторых анализаторах сети , но в связи с преобладанием обратной терминологии в большинстве современного оборудования (анализаторы сети, ИБП, стабилизаторы, корректоры коэффициента мощности и др.) рекомендуется применение терминов приведенных в самом начале.

    Данную терминологию нельзя признать неправильной, но данные и технические характеристики оборудования N-Power указываются в соответствии с европейской и международной терминологией, поэтому рекомендуется применение терминов приведённых в самом начале.

    Российский стандарт. Коэффициент нелинейных искажений (КНИ) и качество сетевого электропитания (ГОСТ 13109-97)

    Ниже представлены выдержки из ГОСТ 13109-97:

    Вычисляют значение коэффициента искажения синусоидальности кривой напряжения Кт в процентах как результат i-го наблюдения по формуле:

    Примечание:
    Относительная погрешность определения КUi с использованием формулы (Б.16) вместо формулы (Б.15) численно равна значению отклонения напряжения U(1)i от Uном.

    Формула приведенная в данном ГОСТе первой (Б.15) соответствует международному определению термина КНИ / THD (см. начало статьи, см. стандарт EN 62040-3).

    Европейский стандарт качества сетевого электропитания (EN 62040-3), и коэффициент нелинейных искажений тока

    Коэффициент нелинейных искажений по току в % идентичен базовому определению КНИ, определенному в стандарте EN 62040-3 и рассчитывается как процентное отношение среднеквадратичных значений высших гармоник к базовой (первой) гармоники. См. прилагаемую формулу.

    Ф.Е.Евдокимов. Теоретические основы электротехники М., Академия 2004 cтр. 262

    Г.И. Атабеков. Основы Теории Цепей с.176, стр. 434

    Анализатор сети Fluke 435. Руководство пользователя

    Справочник по радиоэлектронным устройствам. В 2-х т. Под ред. Д. П. Линде – М.: Энергия, 1978

    Горохов П. К. Толковый словарь по радиоэлектронике. Основные термины – М: Рус. яз., 1993

    Коэффициент нелинейных искажений: http://ru.wikipedia.org/

    Total Harmonic Distortion: http://en.wikipedia.org/wiki/Total_harmonic_distortion

    Total Harmonic Distortion: http://de.wikipedia.org/wiki/THDi http://de.wikipedia.org/wiki/Total_Harmonic_Distortion

    П.Шпритек. Справочное руководство по звуковой схемотехнике 3.1.1. Москва Мир 1991

    Анализатор сети DMK62 Lovato. Руководство пользователя:

    ГОСТ 8.331-99 ГСИ. Измерители коэффициента гармоник. Методы и средства поверки и калибровки.

    Анализатор сети HIOKI3197. Руководство пользователя

    Современные международные обозначения КНИ(THD)
    Приведённые ниже термины повторяют определения приведённые выше.
    I

    Дополнение1
    Замечание: существуют другие определения КНИ(THD) например приведённые ниже но в силовой электротехнике они не используются:
    I THD

    II THD+N
    THD+N обозначает общие искажения плюс шум.

    Дополнение2
    Внимание!
    Во избежании путаницы ниже приведены термины ранее использовавшиеся в русскоязычных учебниках по радио/электротехнике.
    Эти термины могут использоваться в настоящее время в радиотехнике но в силовой электротехнике во избежании путаницы рекомендовано применение международных терминов приведённых выше.
    В русскоязычной литературе ранее были приняты обозначения и термины:
    I
    Коэффицие́нт нелине́йных искаже́ний (КНИ)
    или Коэффициент искажения(ий)
    или Коэффициент гармонических искажений сигнала
    равен отношению действующего значениия основной(первой) гармоники к действующему значению всего сигнала (всей функции).
    d=Кни=КНИ=A1/A=I1/I
    Для синусоиды d=1, для треугольного сигнала d~=0,99, для прямоуг. сигнала d=0,9.
    Дополнительная информация:

    II
    Коэффицие́нт нелине́йных искаже́ний (КНИ) - величина для количественной оценки нелинейных искажений, равная отношению среднеквадратичной суммы всех высших спектральных компонентов сигнала, к среднеквадратичной сумме спектральных компонентов всего сигнала (кроме постоянной составляющей), иногда используется нестандартизованный синоним - клирфактор (заимств. с нем.). КНИ - безразмерная величина, выражается обычно в процентах.

    Коэффициент гармонических искажений - величина, выражающая степень нелинейных искажений устройства (усилителя и др.), равная отношению среднеквадратичного напряжения суммы высших гармоник сигнала к напряжению первой гармоники при воздействии на вход устройства синусоидального сигнала.

    Коэффициент гармоник так же как и КНИ выражается в процентах. Коэффициент гармоник (KГ) связан с КНИ (KН) соотношением:

    Замечание 1: следует признать что данная терминология долгое время являлась «правильной» для русскоязычной, немецкоязычной литературы, так же именно эти определения продолжают использоваться в некоторых анализаторах сети , но в связи с преобладанием обратной терминологии в большинстве современного оборудования (анализаторы сети, ИБП, стабилизаторы, корректоры коэфф. мощности и др.) рекомендуется применение терминов приведённых в самом начале.
    Эту терминологию нельзя признать неправильной, но данные и технические характеристики оборудования N-Power указываются в соответствии с европейской и международной терминологией, поэтому рекомендуется применение терминов приведённых в самом начале.

    Из приведённых в ГОСТ определений видно что вторая формула соответствует определению КНИ (несмотря на то что термин КНИ вообоще отсутствует).

    Ф.Е.Евдокимов Теоретические основы электротехники М., Академия 2004 c.262.
    Г.И. Атабеков Основы Теории Цепей с.176, 434с.
    Анализатор сети Fluke 435 Руководство пользователя
    Справочник по радиоэлектронным устройствам: В 2-х т.; Под ред. Д. П. Линде - М.: Энергия, 1978
    Горохов П. К. Толковый словарь по радиоэлектронике. Основные термины - М: Рус. яз., 1993
    http://ru.wikipedia.org/ Коэффициент нелинейных искажений
    http://en.wikipedia.org/wiki/Total_harmonic_distortion
    http://de.wikipedia.org/wiki/THDi http://de.wikipedia.org/wiki/Total_Harmonic_Distortion
    П.Шпритек Справочное руководство по звуковой схемотехнике 3.1.1, Москва Мир 1991
    Анализатор сети DMK62 Lovato Руководство пользователя.
    http://www.lovatoelectric.com/RICERCA/ITALIANO/03_ISTRUZIONI/I104IGBFE04_08.PDF
    ГОСТ 8.331-99 ГСИ. Измерители коэффициента гармоник. Методы и средства поверки и калибровки
    ГОСТ 8.110-97 ГСИ. Государственная поверочная схема для средств измерения коэффициента гармоник
    ГОСТ 13109-97
    Анализатор сети HIOKI3197 Руководство пользователя

    С замечаниями по содержанию этого раздела просьба обращаться: .

    Александр.
    SIEL подвердил что все правильно с THD
    Можно целиком текст ниже в статью включить+этот стандарт тоже.
    Даниил А.
    ________________________________________
    From: Mazza Angelo
    Sent: Wednesday, December 21, 2011 7:33 PM
    To: Daniil A.
    Cc: "Олег Сергеев"; Matoshi Gladiola; Pensini Glauco
    Subject: R: SafePower Evo input THD //l2
    Dear Mr. Daniil,
    the value THDI%, indicated in the manual, is the definition of Total Harmonic Distortion and is exactly equal to the definition expressed by UPS Statement of EN 62040-3, which defines it as the percentage ratio of the rms value of the harmonic content and the rms value of the fundamental component (first harmonic) which expressed by the following relationship:

    The values I1, I2, I3, ect….are rms values.

    Похожие статьи